Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""VGG16 model for Keras. | |
Adapted from tf_keras.applications.vgg16.VGG16(). | |
Related papers/blogs: | |
- https://arxiv.org/abs/1409.1556 | |
""" | |
import tensorflow as tf, tf_keras | |
layers = tf_keras.layers | |
def _gen_l2_regularizer(use_l2_regularizer=True, l2_weight_decay=1e-4): | |
return tf_keras.regularizers.L2( | |
l2_weight_decay) if use_l2_regularizer else None | |
def vgg16(num_classes, | |
batch_size=None, | |
use_l2_regularizer=True, | |
batch_norm_decay=0.9, | |
batch_norm_epsilon=1e-5): | |
"""Instantiates the VGG16 architecture. | |
Args: | |
num_classes: `int` number of classes for image classification. | |
batch_size: Size of the batches for each step. | |
use_l2_regularizer: whether to use L2 regularizer on Conv/Dense layer. | |
batch_norm_decay: Moment of batch norm layers. | |
batch_norm_epsilon: Epsilon of batch borm layers. | |
Returns: | |
A Keras model instance. | |
""" | |
input_shape = (224, 224, 3) | |
img_input = layers.Input(shape=input_shape, batch_size=batch_size) | |
x = img_input | |
if tf_keras.backend.image_data_format() == 'channels_first': | |
x = layers.Permute((3, 1, 2))(x) | |
bn_axis = 1 | |
else: # channels_last | |
bn_axis = 3 | |
# Block 1 | |
x = layers.Conv2D( | |
64, (3, 3), | |
padding='same', | |
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer), | |
name='block1_conv1')( | |
x) | |
x = layers.BatchNormalization( | |
axis=bn_axis, | |
momentum=batch_norm_decay, | |
epsilon=batch_norm_epsilon, | |
name='bn_conv1')( | |
x) | |
x = layers.Activation('relu')(x) | |
x = layers.Conv2D( | |
64, (3, 3), | |
padding='same', | |
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer), | |
name='block1_conv2')( | |
x) | |
x = layers.BatchNormalization( | |
axis=bn_axis, | |
momentum=batch_norm_decay, | |
epsilon=batch_norm_epsilon, | |
name='bn_conv2')( | |
x) | |
x = layers.Activation('relu')(x) | |
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x) | |
# Block 2 | |
x = layers.Conv2D( | |
128, (3, 3), | |
padding='same', | |
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer), | |
name='block2_conv1')( | |
x) | |
x = layers.BatchNormalization( | |
axis=bn_axis, | |
momentum=batch_norm_decay, | |
epsilon=batch_norm_epsilon, | |
name='bn_conv3')( | |
x) | |
x = layers.Activation('relu')(x) | |
x = layers.Conv2D( | |
128, (3, 3), | |
padding='same', | |
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer), | |
name='block2_conv2')( | |
x) | |
x = layers.BatchNormalization( | |
axis=bn_axis, | |
momentum=batch_norm_decay, | |
epsilon=batch_norm_epsilon, | |
name='bn_conv4')( | |
x) | |
x = layers.Activation('relu')(x) | |
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x) | |
# Block 3 | |
x = layers.Conv2D( | |
256, (3, 3), | |
padding='same', | |
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer), | |
name='block3_conv1')( | |
x) | |
x = layers.BatchNormalization( | |
axis=bn_axis, | |
momentum=batch_norm_decay, | |
epsilon=batch_norm_epsilon, | |
name='bn_conv5')( | |
x) | |
x = layers.Activation('relu')(x) | |
x = layers.Conv2D( | |
256, (3, 3), | |
padding='same', | |
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer), | |
name='block3_conv2')( | |
x) | |
x = layers.BatchNormalization( | |
axis=bn_axis, | |
momentum=batch_norm_decay, | |
epsilon=batch_norm_epsilon, | |
name='bn_conv6')( | |
x) | |
x = layers.Activation('relu')(x) | |
x = layers.Conv2D( | |
256, (3, 3), | |
padding='same', | |
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer), | |
name='block3_conv3')( | |
x) | |
x = layers.BatchNormalization( | |
axis=bn_axis, | |
momentum=batch_norm_decay, | |
epsilon=batch_norm_epsilon, | |
name='bn_conv7')( | |
x) | |
x = layers.Activation('relu')(x) | |
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x) | |
# Block 4 | |
x = layers.Conv2D( | |
512, (3, 3), | |
padding='same', | |
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer), | |
name='block4_conv1')( | |
x) | |
x = layers.BatchNormalization( | |
axis=bn_axis, | |
momentum=batch_norm_decay, | |
epsilon=batch_norm_epsilon, | |
name='bn_conv8')( | |
x) | |
x = layers.Activation('relu')(x) | |
x = layers.Conv2D( | |
512, (3, 3), | |
padding='same', | |
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer), | |
name='block4_conv2')( | |
x) | |
x = layers.BatchNormalization( | |
axis=bn_axis, | |
momentum=batch_norm_decay, | |
epsilon=batch_norm_epsilon, | |
name='bn_conv9')( | |
x) | |
x = layers.Activation('relu')(x) | |
x = layers.Conv2D( | |
512, (3, 3), | |
padding='same', | |
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer), | |
name='block4_conv3')( | |
x) | |
x = layers.BatchNormalization( | |
axis=bn_axis, | |
momentum=batch_norm_decay, | |
epsilon=batch_norm_epsilon, | |
name='bn_conv10')( | |
x) | |
x = layers.Activation('relu')(x) | |
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x) | |
# Block 5 | |
x = layers.Conv2D( | |
512, (3, 3), | |
padding='same', | |
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer), | |
name='block5_conv1')( | |
x) | |
x = layers.BatchNormalization( | |
axis=bn_axis, | |
momentum=batch_norm_decay, | |
epsilon=batch_norm_epsilon, | |
name='bn_conv11')( | |
x) | |
x = layers.Activation('relu')(x) | |
x = layers.Conv2D( | |
512, (3, 3), | |
padding='same', | |
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer), | |
name='block5_conv2')( | |
x) | |
x = layers.BatchNormalization( | |
axis=bn_axis, | |
momentum=batch_norm_decay, | |
epsilon=batch_norm_epsilon, | |
name='bn_conv12')( | |
x) | |
x = layers.Activation('relu')(x) | |
x = layers.Conv2D( | |
512, (3, 3), | |
padding='same', | |
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer), | |
name='block5_conv3')( | |
x) | |
x = layers.BatchNormalization( | |
axis=bn_axis, | |
momentum=batch_norm_decay, | |
epsilon=batch_norm_epsilon, | |
name='bn_conv13')( | |
x) | |
x = layers.Activation('relu')(x) | |
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x) | |
x = layers.Flatten(name='flatten')(x) | |
x = layers.Dense( | |
4096, | |
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer), | |
name='fc1')( | |
x) | |
x = layers.Activation('relu')(x) | |
x = layers.Dropout(0.5)(x) | |
x = layers.Dense( | |
4096, | |
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer), | |
name='fc2')( | |
x) | |
x = layers.Activation('relu')(x) | |
x = layers.Dropout(0.5)(x) | |
x = layers.Dense( | |
num_classes, | |
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer), | |
name='fc1000')( | |
x) | |
x = layers.Activation('softmax', dtype='float32')(x) | |
# Create model. | |
return tf_keras.Model(img_input, x, name='vgg16') | |