Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Defines Transformer model parameters.""" | |
import collections | |
BASE_PARAMS = collections.defaultdict( | |
lambda: None, # Set default value to None. | |
# Input params | |
default_batch_size=2048, # Maximum number of tokens per batch of examples. | |
default_batch_size_tpu=32768, | |
max_length=256, # Maximum number of tokens per example. | |
# Model params | |
initializer_gain=1.0, # Used in trainable variable initialization. | |
vocab_size=33708, # Number of tokens defined in the vocabulary file. | |
hidden_size=512, # Model dimension in the hidden layers. | |
num_hidden_layers=6, # Number of layers in the encoder and decoder stacks. | |
num_heads=8, # Number of heads to use in multi-headed attention. | |
filter_size=2048, # Inner layer dimension in the feedforward network. | |
# Dropout values (only used when training) | |
layer_postprocess_dropout=0.1, | |
attention_dropout=0.1, | |
relu_dropout=0.1, | |
# Training params | |
label_smoothing=0.1, | |
learning_rate=2.0, | |
learning_rate_decay_rate=1.0, | |
learning_rate_warmup_steps=16000, | |
# Optimizer params | |
optimizer_adam_beta1=0.9, | |
optimizer_adam_beta2=0.997, | |
optimizer_adam_epsilon=1e-09, | |
# Default prediction params | |
extra_decode_length=50, | |
beam_size=4, | |
alpha=0.6, # used to calculate length normalization in beam search | |
# TPU specific parameters | |
use_tpu=False, | |
static_batch=False, | |
allow_ffn_pad=True, | |
) | |
BIG_PARAMS = BASE_PARAMS.copy() | |
BIG_PARAMS.update( | |
default_batch_size=4096, | |
# default batch size is smaller than for BASE_PARAMS due to memory limits. | |
default_batch_size_tpu=16384, | |
hidden_size=1024, | |
filter_size=4096, | |
num_heads=16, | |
) | |
# Parameters for running the model in multi gpu. These should not change the | |
# params that modify the model shape (such as the hidden_size or num_heads). | |
BASE_MULTI_GPU_PARAMS = BASE_PARAMS.copy() | |
BASE_MULTI_GPU_PARAMS.update( | |
learning_rate_warmup_steps=8000 | |
) | |
BIG_MULTI_GPU_PARAMS = BIG_PARAMS.copy() | |
BIG_MULTI_GPU_PARAMS.update( | |
layer_postprocess_dropout=0.3, | |
learning_rate_warmup_steps=8000 | |
) | |
# Parameters for testing the model | |
TINY_PARAMS = BASE_PARAMS.copy() | |
TINY_PARAMS.update( | |
default_batch_size=1024, | |
default_batch_size_tpu=1024, | |
hidden_size=32, | |
num_heads=4, | |
filter_size=256, | |
) | |