Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Common flags used in XLNet model.""" | |
from absl import flags | |
flags.DEFINE_string("master", default=None, help="master") | |
flags.DEFINE_string( | |
"tpu", | |
default=None, | |
help="The Cloud TPU to use for training. This should be " | |
"either the name used when creating the Cloud TPU, or a " | |
"url like grpc://ip.address.of.tpu:8470.") | |
flags.DEFINE_bool( | |
"use_tpu", default=True, help="Use TPUs rather than plain CPUs.") | |
flags.DEFINE_string("tpu_topology", "2x2", help="TPU topology.") | |
flags.DEFINE_integer( | |
"num_core_per_host", default=8, help="number of cores per host") | |
flags.DEFINE_string("model_dir", default=None, help="Estimator model_dir.") | |
flags.DEFINE_string( | |
"init_checkpoint", | |
default=None, | |
help="Checkpoint path for initializing the model.") | |
flags.DEFINE_bool( | |
"init_from_transformerxl", | |
default=False, | |
help="Init from a transformerxl model checkpoint. Otherwise, init from the " | |
"entire model checkpoint.") | |
# Optimization config | |
flags.DEFINE_float("learning_rate", default=1e-4, help="Maximum learning rate.") | |
flags.DEFINE_float("clip", default=1.0, help="Gradient clipping value.") | |
flags.DEFINE_float("weight_decay_rate", default=0.0, help="Weight decay rate.") | |
# lr decay | |
flags.DEFINE_integer( | |
"warmup_steps", default=0, help="Number of steps for linear lr warmup.") | |
flags.DEFINE_float("adam_epsilon", default=1e-8, help="Adam epsilon.") | |
flags.DEFINE_float( | |
"lr_layer_decay_rate", | |
default=1.0, | |
help="Top layer: lr[L] = FLAGS.learning_rate." | |
"Lower layers: lr[l-1] = lr[l] * lr_layer_decay_rate.") | |
flags.DEFINE_float( | |
"min_lr_ratio", default=0.0, help="Minimum ratio learning rate.") | |
# Training config | |
flags.DEFINE_integer( | |
"train_batch_size", | |
default=16, | |
help="Size of the train batch across all hosts.") | |
flags.DEFINE_integer( | |
"train_steps", default=100000, help="Total number of training steps.") | |
flags.DEFINE_integer( | |
"iterations", default=1000, help="Number of iterations per repeat loop.") | |
# Data config | |
flags.DEFINE_integer( | |
"seq_len", default=0, help="Sequence length for pretraining.") | |
flags.DEFINE_integer( | |
"reuse_len", | |
default=0, | |
help="How many tokens to be reused in the next batch. " | |
"Could be half of `seq_len`.") | |
flags.DEFINE_bool("uncased", False, help="Use uncased inputs or not.") | |
flags.DEFINE_bool( | |
"bi_data", | |
default=False, | |
help="Use bidirectional data streams, " | |
"i.e., forward & backward.") | |
flags.DEFINE_integer("n_token", 32000, help="Vocab size") | |
# Model config | |
flags.DEFINE_integer("mem_len", default=0, help="Number of steps to cache") | |
flags.DEFINE_bool("same_length", default=False, help="Same length attention") | |
flags.DEFINE_integer("clamp_len", default=-1, help="Clamp length") | |
flags.DEFINE_integer("n_layer", default=6, help="Number of layers.") | |
flags.DEFINE_integer("d_model", default=32, help="Dimension of the model.") | |
flags.DEFINE_integer("d_embed", default=32, help="Dimension of the embeddings.") | |
flags.DEFINE_integer("n_head", default=4, help="Number of attention heads.") | |
flags.DEFINE_integer( | |
"d_head", default=8, help="Dimension of each attention head.") | |
flags.DEFINE_integer( | |
"d_inner", | |
default=32, | |
help="Dimension of inner hidden size in positionwise " | |
"feed-forward.") | |
flags.DEFINE_float("dropout", default=0.1, help="Dropout rate.") | |
flags.DEFINE_float("dropout_att", default=0.1, help="Attention dropout rate.") | |
flags.DEFINE_bool("untie_r", default=False, help="Untie r_w_bias and r_r_bias") | |
flags.DEFINE_string( | |
"ff_activation", | |
default="relu", | |
help="Activation type used in position-wise feed-forward.") | |
flags.DEFINE_string( | |
"strategy_type", | |
default="tpu", | |
help="Activation type used in position-wise feed-forward.") | |
flags.DEFINE_bool("use_bfloat16", False, help="Whether to use bfloat16.") | |
# Parameter initialization | |
flags.DEFINE_enum( | |
"init_method", | |
default="normal", | |
enum_values=["normal", "uniform"], | |
help="Initialization method.") | |
flags.DEFINE_float( | |
"init_std", default=0.02, help="Initialization std when init is normal.") | |
flags.DEFINE_float( | |
"init_range", default=0.1, help="Initialization std when init is uniform.") | |
flags.DEFINE_integer( | |
"test_data_size", default=12048, help="Number of test data samples.") | |
flags.DEFINE_string( | |
"train_tfrecord_path", | |
default=None, | |
help="Path to preprocessed training set tfrecord.") | |
flags.DEFINE_string( | |
"test_tfrecord_path", | |
default=None, | |
help="Path to preprocessed test set tfrecord.") | |
flags.DEFINE_integer( | |
"test_batch_size", | |
default=16, | |
help="Size of the test batch across all hosts.") | |
flags.DEFINE_integer( | |
"save_steps", default=1000, help="Number of steps for saving checkpoint.") | |
FLAGS = flags.FLAGS | |