deanna-emery's picture
updates
93528c6
raw
history blame
5.72 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""XLNet pretraining runner in tf2.0."""
import functools
import os
# Import libraries
from absl import app
from absl import flags
from absl import logging
import tensorflow as tf, tf_keras
# pylint: disable=unused-import
from official.common import distribute_utils
from official.legacy.xlnet import common_flags
from official.legacy.xlnet import data_utils
from official.legacy.xlnet import optimization
from official.legacy.xlnet import training_utils
from official.legacy.xlnet import xlnet_config
from official.legacy.xlnet import xlnet_modeling as modeling
flags.DEFINE_integer(
"num_predict",
default=None,
help="Number of tokens to predict in partial prediction.")
# FLAGS for pretrain input preprocessing
flags.DEFINE_integer("perm_size", 0, help="Window size of permutation.")
flags.DEFINE_float("leak_ratio", default=0.1,
help="Percent of masked tokens that are leaked.")
flags.DEFINE_enum("sample_strategy", default="token_span",
enum_values=["single_token", "whole_word", "token_span",
"word_span"],
help="Stragey used to sample prediction targets.")
flags.DEFINE_integer("max_num_tokens", default=5,
help="Maximum number of tokens to sample in a span."
"Effective when token_span strategy is used.")
flags.DEFINE_integer("min_num_tokens", default=1,
help="Minimum number of tokens to sample in a span."
"Effective when token_span strategy is used.")
flags.DEFINE_integer("max_num_words", default=5,
help="Maximum number of whole words to sample in a span."
"Effective when word_span strategy is used.")
flags.DEFINE_integer("min_num_words", default=1,
help="Minimum number of whole words to sample in a span."
"Effective when word_span strategy is used.")
FLAGS = flags.FLAGS
def get_pretrainxlnet_model(model_config, run_config):
return modeling.PretrainingXLNetModel(
use_proj=True,
xlnet_config=model_config,
run_config=run_config,
name="model")
def main(unused_argv):
del unused_argv
num_hosts = 1
strategy = distribute_utils.get_distribution_strategy(
distribution_strategy=FLAGS.strategy_type,
tpu_address=FLAGS.tpu)
if FLAGS.strategy_type == "tpu":
num_hosts = strategy.extended.num_hosts
if strategy:
logging.info("***** Number of cores used : %d",
strategy.num_replicas_in_sync)
logging.info("***** Number of hosts used : %d", num_hosts)
online_masking_config = data_utils.OnlineMaskingConfig(
sample_strategy=FLAGS.sample_strategy,
max_num_tokens=FLAGS.max_num_tokens,
min_num_tokens=FLAGS.min_num_tokens,
max_num_words=FLAGS.max_num_words,
min_num_words=FLAGS.min_num_words)
train_input_fn = functools.partial(
data_utils.get_pretrain_input_data, FLAGS.train_batch_size, FLAGS.seq_len,
strategy, FLAGS.train_tfrecord_path, FLAGS.reuse_len, FLAGS.perm_size,
FLAGS.leak_ratio, FLAGS.num_predict, FLAGS.uncased, online_masking_config,
num_hosts)
total_training_steps = FLAGS.train_steps
steps_per_loop = FLAGS.iterations
optimizer, learning_rate_fn = optimization.create_optimizer(
init_lr=FLAGS.learning_rate,
num_train_steps=total_training_steps,
num_warmup_steps=FLAGS.warmup_steps,
min_lr_ratio=FLAGS.min_lr_ratio,
adam_epsilon=FLAGS.adam_epsilon,
weight_decay_rate=FLAGS.weight_decay_rate)
model_config = xlnet_config.XLNetConfig(FLAGS)
run_config = xlnet_config.create_run_config(True, False, FLAGS)
input_meta_data = {}
input_meta_data["d_model"] = FLAGS.d_model
input_meta_data["mem_len"] = FLAGS.mem_len
input_meta_data["batch_size_per_core"] = int(FLAGS.train_batch_size /
strategy.num_replicas_in_sync)
input_meta_data["n_layer"] = FLAGS.n_layer
input_meta_data["lr_layer_decay_rate"] = FLAGS.lr_layer_decay_rate
model_fn = functools.partial(get_pretrainxlnet_model, model_config,
run_config)
model = training_utils.train(
strategy=strategy,
model_fn=model_fn,
input_meta_data=input_meta_data,
eval_fn=None,
metric_fn=None,
train_input_fn=train_input_fn,
init_checkpoint=FLAGS.init_checkpoint,
init_from_transformerxl=FLAGS.init_from_transformerxl,
total_training_steps=total_training_steps,
steps_per_loop=steps_per_loop,
optimizer=optimizer,
learning_rate_fn=learning_rate_fn,
model_dir=FLAGS.model_dir,
save_steps=FLAGS.save_steps)
# Export transformer-xl model checkpoint to be used in finetuning.
checkpoint = tf.train.Checkpoint(transformer_xl=model.transformerxl_model)
saved_path = checkpoint.save(
os.path.join(FLAGS.model_dir, "pretrained/transformer_xl.ckpt"))
logging.info("Exporting the transformer-xl model as a new TF checkpoint: %s",
saved_path)
if __name__ == "__main__":
app.run(main)