Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# coding=utf-8 | |
"""Utilities used in SQUAD task.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import collections | |
import gc | |
import json | |
import math | |
import os | |
import pickle | |
import re | |
import string | |
from absl import logging | |
import numpy as np | |
import six | |
import tensorflow as tf, tf_keras | |
from official.legacy.xlnet import data_utils | |
from official.legacy.xlnet import preprocess_utils | |
SPIECE_UNDERLINE = u"▁" | |
class InputFeatures(object): | |
"""A single set of features of data.""" | |
def __init__(self, | |
unique_id, | |
example_index, | |
doc_span_index, | |
tok_start_to_orig_index, | |
tok_end_to_orig_index, | |
token_is_max_context, | |
input_ids, | |
input_mask, | |
p_mask, | |
segment_ids, | |
paragraph_len, | |
cls_index, | |
start_position=None, | |
end_position=None, | |
is_impossible=None): | |
self.unique_id = unique_id | |
self.example_index = example_index | |
self.doc_span_index = doc_span_index | |
self.tok_start_to_orig_index = tok_start_to_orig_index | |
self.tok_end_to_orig_index = tok_end_to_orig_index | |
self.token_is_max_context = token_is_max_context | |
self.input_ids = input_ids | |
self.input_mask = input_mask | |
self.p_mask = p_mask | |
self.segment_ids = segment_ids | |
self.paragraph_len = paragraph_len | |
self.cls_index = cls_index | |
self.start_position = start_position | |
self.end_position = end_position | |
self.is_impossible = is_impossible | |
def make_qid_to_has_ans(dataset): | |
qid_to_has_ans = {} | |
for article in dataset: | |
for p in article["paragraphs"]: | |
for qa in p["qas"]: | |
qid_to_has_ans[qa["id"]] = bool(qa["answers"]) | |
return qid_to_has_ans | |
def get_raw_scores(dataset, preds): | |
"""Gets exact scores and f1 scores.""" | |
exact_scores = {} | |
f1_scores = {} | |
for article in dataset: | |
for p in article["paragraphs"]: | |
for qa in p["qas"]: | |
qid = qa["id"] | |
gold_answers = [ | |
a["text"] for a in qa["answers"] if normalize_answer(a["text"]) | |
] | |
if not gold_answers: | |
# For unanswerable questions, only correct answer is empty string | |
gold_answers = [""] | |
if qid not in preds: | |
print("Missing prediction for %s" % qid) | |
continue | |
a_pred = preds[qid] | |
# Take max over all gold answers | |
exact_scores[qid] = max(compute_exact(a, a_pred) for a in gold_answers) | |
f1_scores[qid] = max(compute_f1(a, a_pred) for a in gold_answers) | |
return exact_scores, f1_scores | |
def normalize_answer(s): | |
"""Lower text and remove punctuation, articles and extra whitespace.""" | |
def remove_articles(text): | |
regex = re.compile(r"\b(a|an|the)\b", re.UNICODE) | |
return re.sub(regex, " ", text) | |
def white_space_fix(text): | |
return " ".join(text.split()) | |
def remove_punc(text): | |
exclude = set(string.punctuation) | |
return "".join(ch for ch in text if ch not in exclude) | |
def lower(text): | |
return text.lower() | |
return white_space_fix(remove_articles(remove_punc(lower(s)))) | |
def compute_exact(a_gold, a_pred): | |
return int(normalize_answer(a_gold) == normalize_answer(a_pred)) | |
def get_tokens(s): | |
if not s: | |
return [] | |
return normalize_answer(s).split() | |
def compute_f1(a_gold, a_pred): | |
"""Computes f1 score.""" | |
gold_toks = get_tokens(a_gold) | |
pred_toks = get_tokens(a_pred) | |
common = collections.Counter(gold_toks) & collections.Counter(pred_toks) | |
num_same = sum(common.values()) | |
# pylint: disable=g-explicit-length-test | |
if len(gold_toks) == 0 or len(pred_toks) == 0: | |
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise | |
return int(gold_toks == pred_toks) | |
if num_same == 0: | |
return 0 | |
precision = 1.0 * num_same / len(pred_toks) | |
recall = 1.0 * num_same / len(gold_toks) | |
f1 = (2 * precision * recall) / (precision + recall) | |
return f1 | |
def find_best_thresh(preds, scores, na_probs, qid_to_has_ans): | |
"""Finds best threshold.""" | |
num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) | |
cur_score = num_no_ans | |
best_score = cur_score | |
best_thresh = 0.0 | |
qid_list = sorted(na_probs, key=lambda k: na_probs[k]) | |
for qid in qid_list: | |
if qid not in scores: | |
continue | |
if qid_to_has_ans[qid]: | |
diff = scores[qid] | |
else: | |
if preds[qid]: | |
diff = -1 | |
else: | |
diff = 0 | |
cur_score += diff | |
if cur_score > best_score: | |
best_score = cur_score | |
best_thresh = na_probs[qid] | |
has_ans_score, has_ans_cnt = 0, 0 | |
for qid in qid_list: | |
if not qid_to_has_ans[qid]: | |
continue | |
has_ans_cnt += 1 | |
if qid not in scores: | |
continue | |
has_ans_score += scores[qid] | |
return 100.0 * best_score / len( | |
scores), best_thresh, 1.0 * has_ans_score / has_ans_cnt | |
def find_all_best_thresh(main_eval, preds, exact_raw, f1_raw, na_probs, | |
qid_to_has_ans): | |
"""Finds all best threshold.""" | |
best_exact, exact_thresh, has_ans_exact = find_best_thresh( | |
preds, exact_raw, na_probs, qid_to_has_ans) | |
best_f1, f1_thresh, has_ans_f1 = find_best_thresh(preds, f1_raw, na_probs, | |
qid_to_has_ans) | |
main_eval["best_exact"] = best_exact | |
main_eval["best_exact_thresh"] = exact_thresh | |
main_eval["best_f1"] = best_f1 | |
main_eval["best_f1_thresh"] = f1_thresh | |
main_eval["has_ans_exact"] = has_ans_exact | |
main_eval["has_ans_f1"] = has_ans_f1 | |
_PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name | |
"PrelimPrediction", [ | |
"feature_index", "start_index", "end_index", "start_log_prob", | |
"end_log_prob" | |
]) | |
_NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name | |
"NbestPrediction", ["text", "start_log_prob", "end_log_prob"]) | |
RawResult = collections.namedtuple("RawResult", [ | |
"unique_id", "start_top_log_probs", "start_top_index", "end_top_log_probs", | |
"end_top_index", "cls_logits" | |
]) | |
def _compute_softmax(scores): | |
"""Computes softmax probability over raw logits.""" | |
if not scores: | |
return [] | |
max_score = None | |
for score in scores: | |
if max_score is None or score > max_score: | |
max_score = score | |
exp_scores = [] | |
total_sum = 0.0 | |
for score in scores: | |
x = math.exp(score - max_score) | |
exp_scores.append(x) | |
total_sum += x | |
probs = [] | |
for score in exp_scores: | |
probs.append(score / total_sum) | |
return probs | |
class SquadExample(object): | |
"""A single training/test example for simple sequence classification. | |
For examples without an answer, the start and end position are -1. | |
""" | |
def __init__(self, | |
qas_id, | |
question_text, | |
paragraph_text, | |
orig_answer_text=None, | |
start_position=None, | |
is_impossible=False): | |
self.qas_id = qas_id | |
self.question_text = question_text | |
self.paragraph_text = paragraph_text | |
self.orig_answer_text = orig_answer_text | |
self.start_position = start_position | |
self.is_impossible = is_impossible | |
def __str__(self): | |
return self.__repr__() | |
def __repr__(self): | |
s = "" | |
s += "qas_id: %s" % (preprocess_utils.printable_text(self.qas_id)) | |
s += ", question_text: %s" % ( | |
preprocess_utils.printable_text(self.question_text)) | |
s += ", paragraph_text: [%s]" % (" ".join(self.paragraph_text)) | |
if self.start_position: | |
s += ", start_position: %d" % (self.start_position) | |
if self.start_position: | |
s += ", is_impossible: %r" % (self.is_impossible) | |
return s | |
def write_predictions(all_examples, all_features, all_results, n_best_size, | |
max_answer_length, output_prediction_file, | |
output_nbest_file, output_null_log_odds_file, orig_data, | |
start_n_top, end_n_top): | |
"""Writes final predictions to the json file and log-odds of null if needed.""" | |
logging.info("Writing predictions to: %s", (output_prediction_file)) | |
example_index_to_features = collections.defaultdict(list) | |
for feature in all_features: | |
example_index_to_features[feature.example_index].append(feature) | |
unique_id_to_result = {} | |
for result in all_results: | |
unique_id_to_result[result.unique_id] = result | |
all_predictions = collections.OrderedDict() | |
all_nbest_json = collections.OrderedDict() | |
scores_diff_json = collections.OrderedDict() | |
for (example_index, example) in enumerate(all_examples): | |
features = example_index_to_features[example_index] | |
prelim_predictions = [] | |
# keep track of the minimum score of null start+end of position 0 | |
score_null = 1000000 # large and positive | |
for (feature_index, feature) in enumerate(features): | |
result = unique_id_to_result[feature.unique_id] | |
cur_null_score = result.cls_logits | |
# if we could have irrelevant answers, get the min score of irrelevant | |
score_null = min(score_null, cur_null_score) | |
for i in range(start_n_top): | |
for j in range(end_n_top): | |
start_log_prob = result.start_top_log_probs[i] | |
start_index = result.start_top_index[i] | |
j_index = i * end_n_top + j | |
end_log_prob = result.end_top_log_probs[j_index] | |
end_index = result.end_top_index[j_index] | |
# We could hypothetically create invalid predictions, e.g., predict | |
# that the start of the span is in the question. We throw out all | |
# invalid predictions. | |
if start_index >= feature.paragraph_len - 1: | |
continue | |
if end_index >= feature.paragraph_len - 1: | |
continue | |
if not feature.token_is_max_context.get(start_index, False): | |
continue | |
if end_index < start_index: | |
continue | |
length = end_index - start_index + 1 | |
if length > max_answer_length: | |
continue | |
prelim_predictions.append( | |
_PrelimPrediction( | |
feature_index=feature_index, | |
start_index=start_index, | |
end_index=end_index, | |
start_log_prob=start_log_prob, | |
end_log_prob=end_log_prob)) | |
prelim_predictions = sorted( | |
prelim_predictions, | |
key=lambda x: (x.start_log_prob + x.end_log_prob), | |
reverse=True) | |
seen_predictions = {} | |
nbest = [] | |
for pred in prelim_predictions: | |
if len(nbest) >= n_best_size: | |
break | |
feature = features[pred.feature_index] | |
tok_start_to_orig_index = feature.tok_start_to_orig_index | |
tok_end_to_orig_index = feature.tok_end_to_orig_index | |
start_orig_pos = tok_start_to_orig_index[pred.start_index] | |
end_orig_pos = tok_end_to_orig_index[pred.end_index] | |
paragraph_text = example.paragraph_text | |
final_text = paragraph_text[start_orig_pos:end_orig_pos + 1].strip() | |
if final_text in seen_predictions: | |
continue | |
seen_predictions[final_text] = True | |
nbest.append( | |
_NbestPrediction( | |
text=final_text, | |
start_log_prob=pred.start_log_prob, | |
end_log_prob=pred.end_log_prob)) | |
# In very rare edge cases we could have no valid predictions. So we | |
# just create a nonce prediction in this case to avoid failure. | |
if not nbest: | |
nbest.append( | |
_NbestPrediction(text="", start_log_prob=-1e6, end_log_prob=-1e6)) | |
total_scores = [] | |
best_non_null_entry = None | |
for entry in nbest: | |
total_scores.append(entry.start_log_prob + entry.end_log_prob) | |
if not best_non_null_entry: | |
best_non_null_entry = entry | |
probs = _compute_softmax(total_scores) | |
nbest_json = [] | |
for (i, entry) in enumerate(nbest): | |
output = collections.OrderedDict() | |
output["text"] = entry.text | |
output["probability"] = probs[i] | |
output["start_log_prob"] = entry.start_log_prob | |
output["end_log_prob"] = entry.end_log_prob | |
nbest_json.append(output) | |
assert len(nbest_json) >= 1 | |
assert best_non_null_entry is not None | |
score_diff = score_null | |
scores_diff_json[example.qas_id] = score_diff | |
all_predictions[example.qas_id] = best_non_null_entry.text | |
all_nbest_json[example.qas_id] = nbest_json | |
with tf.io.gfile.GFile(output_prediction_file, "w") as writer: | |
writer.write(json.dumps(all_predictions, indent=4) + "\n") | |
with tf.io.gfile.GFile(output_nbest_file, "w") as writer: | |
writer.write(json.dumps(all_nbest_json, indent=4) + "\n") | |
with tf.io.gfile.GFile(output_null_log_odds_file, "w") as writer: | |
writer.write(json.dumps(scores_diff_json, indent=4) + "\n") | |
qid_to_has_ans = make_qid_to_has_ans(orig_data) | |
exact_raw, f1_raw = get_raw_scores(orig_data, all_predictions) | |
out_eval = {} | |
find_all_best_thresh(out_eval, all_predictions, exact_raw, f1_raw, | |
scores_diff_json, qid_to_has_ans) | |
return out_eval | |
def read_squad_examples(input_file, is_training): | |
"""Reads a SQuAD json file into a list of SquadExample.""" | |
with tf.io.gfile.GFile(input_file, "r") as reader: | |
input_data = json.load(reader)["data"] | |
examples = [] | |
for entry in input_data: | |
for paragraph in entry["paragraphs"]: | |
paragraph_text = paragraph["context"] | |
for qa in paragraph["qas"]: | |
qas_id = qa["id"] | |
question_text = qa["question"] | |
start_position = None | |
orig_answer_text = None | |
is_impossible = False | |
if is_training: | |
is_impossible = qa["is_impossible"] | |
if (len(qa["answers"]) != 1) and (not is_impossible): | |
raise ValueError( | |
"For training, each question should have exactly 1 answer.") | |
if not is_impossible: | |
answer = qa["answers"][0] | |
orig_answer_text = answer["text"] | |
start_position = answer["answer_start"] | |
else: | |
start_position = -1 | |
orig_answer_text = "" | |
example = SquadExample( | |
qas_id=qas_id, | |
question_text=question_text, | |
paragraph_text=paragraph_text, | |
orig_answer_text=orig_answer_text, | |
start_position=start_position, | |
is_impossible=is_impossible) | |
examples.append(example) | |
return examples | |
# pylint: disable=invalid-name | |
def _convert_index(index, pos, M=None, is_start=True): | |
"""Converts index.""" | |
if index[pos] is not None: | |
return index[pos] | |
N = len(index) | |
rear = pos | |
while rear < N - 1 and index[rear] is None: | |
rear += 1 | |
front = pos | |
while front > 0 and index[front] is None: | |
front -= 1 | |
assert index[front] is not None or index[rear] is not None | |
if index[front] is None: | |
if index[rear] >= 1: | |
if is_start: | |
return 0 | |
else: | |
return index[rear] - 1 | |
return index[rear] | |
if index[rear] is None: | |
if M is not None and index[front] < M - 1: | |
if is_start: | |
return index[front] + 1 | |
else: | |
return M - 1 | |
return index[front] | |
if is_start: | |
if index[rear] > index[front] + 1: | |
return index[front] + 1 | |
else: | |
return index[rear] | |
else: | |
if index[rear] > index[front] + 1: | |
return index[rear] - 1 | |
else: | |
return index[front] | |
def convert_examples_to_features(examples, sp_model, max_seq_length, doc_stride, | |
max_query_length, is_training, output_fn, | |
uncased): | |
"""Loads a data file into a list of `InputBatch`s.""" | |
cnt_pos, cnt_neg = 0, 0 | |
unique_id = 1000000000 | |
max_N, max_M = 1024, 1024 | |
f = np.zeros((max_N, max_M), dtype=np.float32) | |
for (example_index, example) in enumerate(examples): | |
# pylint: disable=logging-format-interpolation | |
if example_index % 100 == 0: | |
logging.info("Converting {}/{} pos {} neg {}".format( | |
example_index, len(examples), cnt_pos, cnt_neg)) | |
query_tokens = preprocess_utils.encode_ids( | |
sp_model, | |
preprocess_utils.preprocess_text(example.question_text, lower=uncased)) | |
if len(query_tokens) > max_query_length: | |
query_tokens = query_tokens[0:max_query_length] | |
paragraph_text = example.paragraph_text | |
para_tokens = preprocess_utils.encode_pieces( | |
sp_model, | |
preprocess_utils.preprocess_text(example.paragraph_text, lower=uncased)) | |
chartok_to_tok_index = [] | |
tok_start_to_chartok_index = [] | |
tok_end_to_chartok_index = [] | |
char_cnt = 0 | |
for i, token in enumerate(para_tokens): | |
chartok_to_tok_index.extend([i] * len(token)) | |
tok_start_to_chartok_index.append(char_cnt) | |
char_cnt += len(token) | |
tok_end_to_chartok_index.append(char_cnt - 1) | |
tok_cat_text = "".join(para_tokens).replace(SPIECE_UNDERLINE, " ") | |
N, M = len(paragraph_text), len(tok_cat_text) | |
if N > max_N or M > max_M: | |
max_N = max(N, max_N) | |
max_M = max(M, max_M) | |
f = np.zeros((max_N, max_M), dtype=np.float32) | |
gc.collect() | |
g = {} | |
# pylint: disable=cell-var-from-loop | |
def _lcs_match(max_dist): | |
"""LCS match.""" | |
f.fill(0) | |
g.clear() | |
### longest common sub sequence | |
# f[i, j] = max(f[i - 1, j], f[i, j - 1], f[i - 1, j - 1] + match(i, j)) | |
for i in range(N): | |
# note(zhiliny): | |
# unlike standard LCS, this is specifically optimized for the setting | |
# because the mismatch between sentence pieces and original text will | |
# be small | |
for j in range(i - max_dist, i + max_dist): | |
if j >= M or j < 0: | |
continue | |
if i > 0: | |
g[(i, j)] = 0 | |
f[i, j] = f[i - 1, j] | |
if j > 0 and f[i, j - 1] > f[i, j]: | |
g[(i, j)] = 1 | |
f[i, j] = f[i, j - 1] | |
f_prev = f[i - 1, j - 1] if i > 0 and j > 0 else 0 | |
if (preprocess_utils.preprocess_text( | |
paragraph_text[i], lower=uncased, | |
remove_space=False) == tok_cat_text[j] and f_prev + 1 > f[i, j]): | |
g[(i, j)] = 2 | |
f[i, j] = f_prev + 1 | |
max_dist = abs(N - M) + 5 | |
for _ in range(2): | |
_lcs_match(max_dist) | |
if f[N - 1, M - 1] > 0.8 * N: | |
break | |
max_dist *= 2 | |
orig_to_chartok_index = [None] * N | |
chartok_to_orig_index = [None] * M | |
i, j = N - 1, M - 1 | |
while i >= 0 and j >= 0: | |
if (i, j) not in g: | |
break | |
if g[(i, j)] == 2: | |
orig_to_chartok_index[i] = j | |
chartok_to_orig_index[j] = i | |
i, j = i - 1, j - 1 | |
elif g[(i, j)] == 1: | |
j = j - 1 | |
else: | |
i = i - 1 | |
if all( | |
v is None for v in orig_to_chartok_index) or f[N - 1, M - 1] < 0.8 * N: | |
print("MISMATCH DETECTED!") | |
continue | |
tok_start_to_orig_index = [] | |
tok_end_to_orig_index = [] | |
for i in range(len(para_tokens)): | |
start_chartok_pos = tok_start_to_chartok_index[i] | |
end_chartok_pos = tok_end_to_chartok_index[i] | |
start_orig_pos = _convert_index( | |
chartok_to_orig_index, start_chartok_pos, N, is_start=True) | |
end_orig_pos = _convert_index( | |
chartok_to_orig_index, end_chartok_pos, N, is_start=False) | |
tok_start_to_orig_index.append(start_orig_pos) | |
tok_end_to_orig_index.append(end_orig_pos) | |
if not is_training: | |
tok_start_position = tok_end_position = None | |
if is_training and example.is_impossible: | |
tok_start_position = -1 | |
tok_end_position = -1 | |
if is_training and not example.is_impossible: | |
start_position = example.start_position | |
end_position = start_position + len(example.orig_answer_text) - 1 | |
start_chartok_pos = _convert_index( | |
orig_to_chartok_index, start_position, is_start=True) | |
tok_start_position = chartok_to_tok_index[start_chartok_pos] | |
end_chartok_pos = _convert_index( | |
orig_to_chartok_index, end_position, is_start=False) | |
tok_end_position = chartok_to_tok_index[end_chartok_pos] | |
assert tok_start_position <= tok_end_position | |
def _piece_to_id(x): | |
if six.PY2 and isinstance(x, unicode): # pylint: disable=undefined-variable | |
x = x.encode("utf-8") | |
return sp_model.PieceToId(x) | |
all_doc_tokens = list(map(_piece_to_id, para_tokens)) | |
# The -3 accounts for [CLS], [SEP] and [SEP] | |
max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 | |
# We can have documents that are longer than the maximum sequence length. | |
# To deal with this we do a sliding window approach, where we take chunks | |
# of the up to our max length with a stride of `doc_stride`. | |
_DocSpan = collections.namedtuple( # pylint: disable=invalid-name | |
"DocSpan", ["start", "length"]) | |
doc_spans = [] | |
start_offset = 0 | |
while start_offset < len(all_doc_tokens): | |
length = len(all_doc_tokens) - start_offset | |
if length > max_tokens_for_doc: | |
length = max_tokens_for_doc | |
doc_spans.append(_DocSpan(start=start_offset, length=length)) | |
if start_offset + length == len(all_doc_tokens): | |
break | |
start_offset += min(length, doc_stride) | |
for (doc_span_index, doc_span) in enumerate(doc_spans): | |
tokens = [] | |
token_is_max_context = {} | |
segment_ids = [] | |
p_mask = [] | |
cur_tok_start_to_orig_index = [] | |
cur_tok_end_to_orig_index = [] | |
for i in range(doc_span.length): | |
split_token_index = doc_span.start + i | |
cur_tok_start_to_orig_index.append( | |
tok_start_to_orig_index[split_token_index]) | |
cur_tok_end_to_orig_index.append( | |
tok_end_to_orig_index[split_token_index]) | |
is_max_context = _check_is_max_context(doc_spans, doc_span_index, | |
split_token_index) | |
token_is_max_context[len(tokens)] = is_max_context | |
tokens.append(all_doc_tokens[split_token_index]) | |
segment_ids.append(data_utils.SEG_ID_P) | |
p_mask.append(0) | |
paragraph_len = len(tokens) | |
tokens.append(data_utils.SEP_ID) | |
segment_ids.append(data_utils.SEG_ID_P) | |
p_mask.append(1) | |
# note(zhiliny): we put P before Q | |
# because during pretraining, B is always shorter than A | |
for token in query_tokens: | |
tokens.append(token) | |
segment_ids.append(data_utils.SEG_ID_Q) | |
p_mask.append(1) | |
tokens.append(data_utils.SEP_ID) | |
segment_ids.append(data_utils.SEG_ID_Q) | |
p_mask.append(1) | |
cls_index = len(segment_ids) | |
tokens.append(data_utils.CLS_ID) | |
segment_ids.append(data_utils.SEG_ID_CLS) | |
p_mask.append(0) | |
input_ids = tokens | |
# The mask has 0 for real tokens and 1 for padding tokens. Only real | |
# tokens are attended to. | |
input_mask = [0] * len(input_ids) | |
# Zero-pad up to the sequence length. | |
while len(input_ids) < max_seq_length: | |
input_ids.append(0) | |
input_mask.append(1) | |
segment_ids.append(data_utils.SEG_ID_PAD) | |
p_mask.append(1) | |
assert len(input_ids) == max_seq_length | |
assert len(input_mask) == max_seq_length | |
assert len(segment_ids) == max_seq_length | |
assert len(p_mask) == max_seq_length | |
span_is_impossible = example.is_impossible | |
start_position = None | |
end_position = None | |
if is_training and not span_is_impossible: | |
# For training, if our document chunk does not contain an annotation | |
# we throw it out, since there is nothing to predict. | |
doc_start = doc_span.start | |
doc_end = doc_span.start + doc_span.length - 1 | |
out_of_span = False | |
if not (tok_start_position >= doc_start and | |
tok_end_position <= doc_end): | |
out_of_span = True | |
if out_of_span: | |
# continue | |
start_position = 0 | |
end_position = 0 | |
span_is_impossible = True | |
else: | |
# note: we put P before Q, so doc_offset should be zero. | |
# doc_offset = len(query_tokens) + 2 | |
doc_offset = 0 | |
start_position = tok_start_position - doc_start + doc_offset | |
end_position = tok_end_position - doc_start + doc_offset | |
if is_training and span_is_impossible: | |
start_position = cls_index | |
end_position = cls_index | |
if example_index < 20: | |
logging.info("*** Example ***") | |
logging.info("unique_id: %s", unique_id) | |
logging.info("example_index: %s", example_index) | |
logging.info("doc_span_index: %s", doc_span_index) | |
logging.info("tok_start_to_orig_index: %s", | |
" ".join([str(x) for x in cur_tok_start_to_orig_index])) | |
logging.info("tok_end_to_orig_index: %s", | |
" ".join([str(x) for x in cur_tok_end_to_orig_index])) | |
logging.info( | |
"token_is_max_context: %s", " ".join([ | |
"%d:%s" % (x, y) | |
for (x, y) in six.iteritems(token_is_max_context) | |
])) | |
logging.info("input_ids: %s", " ".join([str(x) for x in input_ids])) | |
logging.info("input_mask: %s", " ".join([str(x) for x in input_mask])) | |
logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids])) | |
if is_training and span_is_impossible: | |
logging.info("impossible example span") | |
if is_training and not span_is_impossible: | |
pieces = [ | |
sp_model.IdToPiece(token) | |
for token in tokens[start_position:(end_position + 1)] | |
] | |
answer_text = sp_model.DecodePieces(pieces) | |
logging.info("start_position: %d", start_position) | |
logging.info("end_position: %d", end_position) | |
logging.info("answer: %s", | |
preprocess_utils.printable_text(answer_text)) | |
# With multi processing, the example_index is actually the index | |
# within the current process therefore we use example_index=None to | |
# avoid being used in the future. # The current code does not use | |
# example_index of training data. | |
if is_training: | |
feat_example_index = None | |
else: | |
feat_example_index = example_index | |
feature = InputFeatures( | |
unique_id=unique_id, | |
example_index=feat_example_index, | |
doc_span_index=doc_span_index, | |
tok_start_to_orig_index=cur_tok_start_to_orig_index, | |
tok_end_to_orig_index=cur_tok_end_to_orig_index, | |
token_is_max_context=token_is_max_context, | |
input_ids=input_ids, | |
input_mask=input_mask, | |
p_mask=p_mask, | |
segment_ids=segment_ids, | |
paragraph_len=paragraph_len, | |
cls_index=cls_index, | |
start_position=start_position, | |
end_position=end_position, | |
is_impossible=span_is_impossible) | |
# Run callback | |
output_fn(feature) | |
unique_id += 1 | |
if span_is_impossible: | |
cnt_neg += 1 | |
else: | |
cnt_pos += 1 | |
logging.info("Total number of instances: %d = pos %d + neg %d", | |
cnt_pos + cnt_neg, cnt_pos, cnt_neg) | |
def _check_is_max_context(doc_spans, cur_span_index, position): | |
"""Check if this is the "max context" doc span for the token.""" | |
# Because of the sliding window approach taken to scoring documents, a single | |
# token can appear in multiple documents. E.g. | |
# Doc: the man went to the store and bought a gallon of milk | |
# Span A: the man went to the | |
# Span B: to the store and bought | |
# Span C: and bought a gallon of | |
# ... | |
# | |
# Now the word "bought" will have two scores from spans B and C. We only | |
# want to consider the score with "maximum context", which we define as | |
# the *minimum* of its left and right context (the *sum* of left and | |
# right context will always be the same, of course). | |
# | |
# In the example the maximum context for "bought" would be span C since | |
# it has 1 left context and 3 right context, while span B has 4 left context | |
# and 0 right context. | |
best_score = None | |
best_span_index = None | |
for (span_index, doc_span) in enumerate(doc_spans): | |
end = doc_span.start + doc_span.length - 1 | |
if position < doc_span.start: | |
continue | |
if position > end: | |
continue | |
num_left_context = position - doc_span.start | |
num_right_context = end - position | |
score = min(num_left_context, num_right_context) + 0.01 * doc_span.length | |
if best_score is None or score > best_score: | |
best_score = score | |
best_span_index = span_index | |
return cur_span_index == best_span_index | |
class FeatureWriter(object): | |
"""Writes InputFeature to TF example file.""" | |
def __init__(self, filename, is_training): | |
self.filename = filename | |
self.is_training = is_training | |
self.num_features = 0 | |
self._writer = tf.io.TFRecordWriter(filename) | |
def process_feature(self, feature): | |
"""Write a InputFeature to the TFRecordWriter as a tf.train.Example.""" | |
self.num_features += 1 | |
def create_int_feature(values): | |
feature = tf.train.Feature( | |
int64_list=tf.train.Int64List(value=list(values))) | |
return feature | |
def create_float_feature(values): | |
f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values))) | |
return f | |
features = collections.OrderedDict() | |
features["unique_ids"] = create_int_feature([feature.unique_id]) | |
features["input_ids"] = create_int_feature(feature.input_ids) | |
features["input_mask"] = create_float_feature(feature.input_mask) | |
features["p_mask"] = create_float_feature(feature.p_mask) | |
features["segment_ids"] = create_int_feature(feature.segment_ids) | |
features["cls_index"] = create_int_feature([feature.cls_index]) | |
if self.is_training: | |
features["start_positions"] = create_int_feature([feature.start_position]) | |
features["end_positions"] = create_int_feature([feature.end_position]) | |
impossible = 0 | |
if feature.is_impossible: | |
impossible = 1 | |
features["is_impossible"] = create_float_feature([impossible]) | |
tf_example = tf.train.Example(features=tf.train.Features(feature=features)) | |
self._writer.write(tf_example.SerializeToString()) | |
def close(self): | |
self._writer.close() | |
def create_eval_data(spm_basename, | |
sp_model, | |
eval_examples, | |
max_seq_length, | |
max_query_length, | |
doc_stride, | |
uncased, | |
output_dir=None): | |
"""Creates evaluation tfrecords.""" | |
eval_features = [] | |
eval_writer = None | |
if output_dir: | |
eval_rec_file = os.path.join( | |
output_dir, | |
"{}.slen-{}.qlen-{}.eval.tf_record".format(spm_basename, max_seq_length, | |
max_query_length)) | |
eval_feature_file = os.path.join( | |
output_dir, | |
"{}.slen-{}.qlen-{}.eval.features.pkl".format(spm_basename, | |
max_seq_length, | |
max_query_length)) | |
eval_writer = FeatureWriter(filename=eval_rec_file, is_training=False) | |
def append_feature(feature): | |
eval_features.append(feature) | |
if eval_writer: | |
eval_writer.process_feature(feature) | |
convert_examples_to_features( | |
examples=eval_examples, | |
sp_model=sp_model, | |
max_seq_length=max_seq_length, | |
doc_stride=doc_stride, | |
max_query_length=max_query_length, | |
is_training=False, | |
output_fn=append_feature, | |
uncased=uncased) | |
if eval_writer: | |
eval_writer.close() | |
with tf.io.gfile.GFile(eval_feature_file, "wb") as fout: | |
pickle.dump(eval_features, fout) | |
return eval_features | |