deanna-emery's picture
updates
93528c6
raw
history blame
47.6 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Keras layers of XLNet model in TF 2.0."""
import copy
import warnings
import tensorflow as tf, tf_keras
from official.legacy.xlnet import data_utils
from official.nlp.modeling import networks
def gelu(x):
return tf_keras.activations.gelu(x, approximate=True)
def _get_initializer(flags):
"""Get variable initializer."""
if flags.init_method == "uniform":
initializer = tf_keras.initializers.RandomUniform(
minval=-flags.init_range, maxval=flags.init_range)
elif flags.init_method == "normal":
initializer = tf_keras.initializers.RandomNormal(stddev=flags.init_std)
else:
raise ValueError("Initializer {} not supported".format(flags.init_method))
return initializer
def rel_shift(x, klen=-1):
"""Performs relative shift to form the relative attention score."""
x_size = tf.shape(x)
x = tf.reshape(x, [x_size[1], x_size[0], x_size[2], x_size[3]])
x = tf.slice(x, [1, 0, 0, 0], [-1, -1, -1, -1])
x = tf.reshape(x, [x_size[0], x_size[1] - 1, x_size[2], x_size[3]])
x = tf.slice(x, [0, 0, 0, 0], [-1, klen, -1, -1])
return x
def _create_mask(qlen, mlen, dtype=tf.float32, same_length=False):
"""Creates attention mask when single-side context allowed only."""
attn_mask = tf.ones([qlen, qlen], dtype=dtype)
mask_u = tf.linalg.band_part(attn_mask, 0, -1)
mask_dia = tf.linalg.band_part(attn_mask, 0, 0)
attn_mask_pad = tf.zeros([qlen, mlen], dtype=dtype)
ret = tf.concat([attn_mask_pad, mask_u - mask_dia], 1)
if same_length:
mask_l = tf.linalg.band_part(attn_mask, -1, 0)
ret = tf.concat([ret[:, :qlen] + mask_l - mask_dia, ret[:, qlen:]], 1)
return ret
def _cache_mem(curr_out, prev_mem, mem_len, reuse_len=None):
"""cache hidden states into memory."""
if mem_len is None or mem_len == 0:
return None
else:
if reuse_len is not None and reuse_len > 0:
curr_out = curr_out[:reuse_len]
if prev_mem is None:
new_mem = curr_out[-mem_len:]
else:
new_mem = tf.concat([prev_mem, curr_out], 0)[-mem_len:]
return tf_keras.backend.stop_gradient(new_mem)
def is_special_none_tensor(tensor):
"""Checks if a tensor is a special None Tensor."""
return tensor.shape.ndims == 0 and tensor.dtype == tf.int32
@tf_keras.utils.register_keras_serializable(package="Text")
class RelativePositionEncoding(tf_keras.layers.Layer):
"""Creates a relative positional encoding.
This layer creates a relative positional encoding as described in
"Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
(https://arxiv.org/abs/1901.02860).
Rather than an absolute position embedding as in Transformer, this
formulation represents position as the relative distance between tokens using
sinusoidal positional embeddings.
Note: This layer is currently experimental.
Attributes:
hidden_size: The dimensionality of the input embeddings.
"""
def __init__(self, hidden_size, **kwargs):
super(RelativePositionEncoding, self).__init__(**kwargs)
self._hidden_size = hidden_size
self._inv_freq = 1.0 / (10000.0**(
tf.range(0, self._hidden_size, 2.0) / self._hidden_size))
def call(self, pos_seq, batch_size=None):
"""Implements call() for the layer.
Args:
pos_seq: A 1-D `Tensor`
batch_size: The optionally provided batch size that tiles the relative
positional encoding.
Returns:
The relative positional encoding of shape:
[len(pos_seq), batch_size, hidden_size] if batch_size is provided, else
[len(pos_seq), 1, hidden_size].
"""
sinusoid_input = tf.einsum("i,d->id", pos_seq, self._inv_freq)
pos_emb = tf.concat([tf.sin(sinusoid_input), tf.cos(sinusoid_input)], -1)
pos_emb = pos_emb[:, None, :]
if batch_size is not None:
pos_emb = tf.tile(pos_emb, [1, batch_size, 1])
return pos_emb
class RelativeAttention(tf_keras.layers.Layer):
"""Core calculations for relative attention."""
def __init__(self, dropout_att, scale):
super(RelativeAttention, self).__init__()
self.scale = scale
self.dropout_att = dropout_att
def build(self, unused_input_shapes):
"""Implements build() for the layer."""
self.attention_probs_dropout = tf_keras.layers.Dropout(
rate=self.dropout_att)
super(RelativeAttention, self).build(unused_input_shapes)
def call(self, q_head, k_head_h, v_head_h, k_head_r, seg_embed, seg_mat,
r_w_bias, r_r_bias, r_s_bias, attn_mask):
"""Implements call() for the layer."""
# content based attention score
ac = tf.einsum("ibnd,jbnd->ijbn", q_head + r_w_bias, k_head_h)
# position based attention score
bd = tf.einsum("ibnd,jbnd->ijbn", q_head + r_r_bias, k_head_r)
bd = rel_shift(bd, klen=tf.shape(ac)[1])
# segment-based attention score
if seg_mat is None:
ef = 0
else:
ef = tf.einsum("ibnd,snd->isbn", q_head + r_s_bias, seg_embed)
tgt_shape = tf.shape(bd)
ef = tf.where(
tf.broadcast_to(tf.expand_dims(seg_mat, 3), tgt_shape),
tf.broadcast_to(ef[:, 1:, :, :], tgt_shape),
tf.broadcast_to(ef[:, :1, :, :], tgt_shape))
# merges attention scores and performs masking
attn_score = (ac + bd + ef) * self.scale
if attn_mask is not None:
attn_score = attn_score - 1e30 * attn_mask
# attention probability
attn_prob = tf.nn.softmax(attn_score, 1)
attn_prob = self.attention_probs_dropout(attn_prob)
# attention output
attn_vec = tf.einsum("ijbn,jbnd->ibnd", attn_prob, v_head_h)
return attn_vec
class PositionwiseFF(tf_keras.layers.Layer):
"""Positionwise feed-forward layer."""
def __init__(self, d_model, d_inner, dropout, kernel_initializer,
activation_type, **kwargs):
super(PositionwiseFF, self).__init__(**kwargs)
self.d_model = d_model
self.d_inner = d_inner
self.dropout = dropout
self.activation_type = activation_type
self.kernel_initializer = kernel_initializer
def build(self, unused_input_shapes):
"""Implements build() for the layer."""
if self.activation_type == "relu":
activation = tf.nn.relu
elif self.activation_type == "gelu":
activation = gelu
else:
raise (ValueError("Unsupported activation type {}".format(
self.activation_type)))
self.inner_projection_layer = (
tf_keras.layers.Dense(
units=self.d_inner,
activation=activation,
kernel_initializer=self.kernel_initializer,
name="layer_1"))
self.output_projection_layer = (
tf_keras.layers.Dense(
units=self.d_model,
kernel_initializer=self.kernel_initializer,
name="layer_2"))
self.output_dropout = tf_keras.layers.Dropout(
rate=self.dropout, name="drop_2")
self.output_layer_norm = (
tf_keras.layers.LayerNormalization(
name="LayerNorm", axis=-1, epsilon=1e-12))
super(PositionwiseFF, self).build(unused_input_shapes)
def call(self, inp):
"""Implements call() for the layer."""
output = self.inner_projection_layer(inp)
output = self.output_projection_layer(output)
output = self.output_dropout(output)
output = self.output_layer_norm(output + inp)
return output
class EmbeddingLookup(tf_keras.layers.Layer):
"""Looks up words embeddings for id tensor."""
def __init__(self, n_token, d_embed, initializer, **kwargs):
super(EmbeddingLookup, self).__init__(**kwargs)
self.n_token = n_token
self.d_embed = d_embed
self.initializer = initializer
def build(self, unused_input_shapes):
"""Implements build() for the layer."""
self.lookup_table = self.add_weight(
"lookup_table",
shape=[self.n_token, self.d_embed],
initializer=self.initializer,
dtype=self.dtype)
super(EmbeddingLookup, self).build(unused_input_shapes)
def call(self, inputs):
return tf.nn.embedding_lookup(self.lookup_table, inputs)
class RelativeMultiheadAttention(tf_keras.layers.Layer):
"""Multi-head attention with relative embedding."""
def __init__(self, d_model, n_head, d_head, dropout, dropout_att,
kernel_initializer, **kwargs):
super(RelativeMultiheadAttention, self).__init__(**kwargs)
self.d_model = d_model
self.n_head = n_head
self.d_head = d_head
self.dropout = dropout
self.dropout_att = dropout_att
self.initializer = kernel_initializer
def build(self, unused_input_shapes):
"""Implements build() for the layer."""
self.scale = 1.0 / (self.d_head**0.5)
self.output_layer_norm = tf_keras.layers.LayerNormalization(
name="LayerNorm", axis=-1, epsilon=1e-12)
self.kh_projection_layer = self.add_weight(
"k/kernel",
shape=[self.d_model, self.n_head, self.d_head],
initializer=self.initializer)
self.vh_projection_layer = self.add_weight(
"v/kernel",
shape=[self.d_model, self.n_head, self.d_head],
initializer=self.initializer)
self.kr_projection_layer = self.add_weight(
"r/kernel",
shape=[self.d_model, self.n_head, self.d_head],
initializer=self.initializer)
self.qh_projection_layer = self.add_weight(
"q/kernel",
shape=[self.d_model, self.n_head, self.d_head],
initializer=self.initializer)
self.relative_attention_layer = RelativeAttention(
dropout_att=self.dropout_att, scale=self.scale)
self.proj_o = self.add_weight(
"o/kernel",
shape=[self.d_model, self.n_head, self.d_head],
initializer=self.initializer)
self.attention_dropout = tf_keras.layers.Dropout(rate=self.dropout)
super(RelativeMultiheadAttention, self).build(unused_input_shapes)
def call(self, h, g, r, r_w_bias, r_r_bias, seg_mat, r_s_bias, seg_embed,
attn_mask_h, attn_mask_g, mems, target_mapping):
"""Implements call() for the layer."""
if mems is not None and mems.shape.ndims > 1:
cat = tf.concat([mems, h], 0)
else:
cat = h
# content heads
q_head_h = tf.einsum("ibh,hnd->ibnd", h, self.qh_projection_layer)
k_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.kh_projection_layer)
v_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.vh_projection_layer)
# positional heads
k_head_r = tf.einsum("ibh,hnd->ibnd", r, self.kr_projection_layer)
# core attention ops
attn_vec_h = self.relative_attention_layer(q_head_h, k_head_h, v_head_h,
k_head_r, seg_embed, seg_mat,
r_w_bias, r_r_bias, r_s_bias,
attn_mask_h)
# post processing
output_h = tf.einsum("ibnd,hnd->ibh", attn_vec_h, self.proj_o)
output_h = self.attention_dropout(output_h)
output_h = self.output_layer_norm(output_h + h)
output_g = None
if g is not None: # enable two-stream attention
# g-stream
q_head_g = tf.einsum("ibh,hnd->ibnd", g, self.qh_projection_layer)
if target_mapping is not None:
q_head_g = tf.einsum("mbnd,mlb->lbnd", q_head_g, target_mapping)
attn_vec_g = self.relative_attention_layer(q_head_g, k_head_h, v_head_h,
k_head_r, seg_embed, seg_mat,
r_w_bias, r_r_bias, r_s_bias,
attn_mask_g)
attn_vec_g = tf.einsum("lbnd,mlb->mbnd", attn_vec_g, target_mapping)
else:
attn_vec_g = self.relative_attention_layer(q_head_g, k_head_h, v_head_h,
k_head_r, seg_embed, seg_mat,
r_w_bias, r_r_bias, r_s_bias,
attn_mask_g)
# post processing
output_g = tf.einsum("ibnd,hnd->ibh", attn_vec_g, self.proj_o)
output_g = self.attention_dropout(output_g)
output_g = self.output_layer_norm(output_g + g)
return (output_h, output_g)
class TransformerXLModel(tf_keras.layers.Layer):
"""Defines a Transformer-XL computation graph with additional support for XLNet."""
def __init__(self,
n_token,
n_layer,
d_model,
n_head,
d_head,
d_inner,
dropout,
dropout_att,
attn_type,
bi_data,
is_training,
initializer,
mem_len=None,
same_length=False,
clamp_len=-1,
untie_r=False,
use_tpu=True,
reuse_len=None,
ff_activation="relu",
use_cls_mask=False,
**kwargs):
"""Initializes TransformerXLModel.
Args:
n_token: int, the number of tokens in vocabulary.
n_layer: int, the number of layers.
d_model: int, the hidden size.
n_head: int, the number of attention heads.
d_head: int, the dimension size of each attention head.
d_inner: int, the hidden size in feed-forward layers.
dropout: float, dropout rate.
dropout_att: float, dropout rate on attention probabilities.
attn_type: str, "uni" or "bi".
bi_data: bool, whether to use bidirectional input pipeline. Usually set to
True during pretraining and False during finetuning.
is_training: bool, whether in training mode.
initializer: A tf initializer.
mem_len: int, the number of tokens to cache.
same_length: bool, whether to use the same attention length for each
token.
clamp_len: int, clamp all relative distances larger than clamp_len. -1
means no clamping.
untie_r: bool, whether to untie the biases in attention.
use_tpu: bool, whether TPUs are used.
reuse_len: int, the number of tokens in the currect batch to be cached and
reused in the future.
ff_activation: str, "relu" or "gelu".
use_cls_mask: bool, whether to introduce cls mask.
**kwargs: Other parameters.
"""
super(TransformerXLModel, self).__init__(**kwargs)
warnings.warn(
"`TransformerXLModel` is deprecated, please use `XLNetBase` instead",
DeprecationWarning, stacklevel=2)
self.n_token = n_token
self.initializer = initializer
self.attn_type = attn_type
self.n_layer = n_layer
self.d_model = d_model
self.n_head = n_head
self.d_head = d_head
self.d_inner = d_inner
self.ff_activation = ff_activation
self.untie_r = untie_r
self.use_tpu = use_tpu
self.dropout = dropout
self.dropout_att = dropout_att
self.mem_len = mem_len
self.reuse_len = reuse_len
self.bi_data = bi_data
self.clamp_len = clamp_len
self.same_length = same_length
self.use_cls_mask = use_cls_mask
def build(self, unused_input_shapes):
"""Implements build() for the layer."""
self.tf_float = tf.float32
self.embedding_lookup = EmbeddingLookup(
n_token=self.n_token,
d_embed=self.d_model,
initializer=self.initializer,
dtype=self.tf_float,
name="word_embedding")
self.h_dropout = tf_keras.layers.Dropout(rate=self.dropout)
self.g_dropout = tf_keras.layers.Dropout(rate=self.dropout)
if self.untie_r:
self.r_w_bias = (
self.add_weight(
"r_w_bias",
shape=[self.n_layer, self.n_head, self.d_head],
dtype=self.tf_float,
initializer=self.initializer))
self.r_r_bias = (
self.add_weight(
"r_r_bias",
shape=[self.n_layer, self.n_head, self.d_head],
dtype=self.tf_float,
initializer=self.initializer))
self.r_s_bias = (
self.add_weight(
"r_s_bias",
shape=[self.n_layer, self.n_head, self.d_head],
dtype=self.tf_float,
initializer=self.initializer))
else:
self.r_w_bias = (
self.add_weight(
"r_w_bias",
shape=[self.n_head, self.d_head],
dtype=self.tf_float,
initializer=self.initializer))
self.r_r_bias = (
self.add_weight(
"r_r_bias",
shape=[self.n_head, self.d_head],
dtype=self.tf_float,
initializer=self.initializer))
self.r_s_bias = (
self.add_weight(
"r_s_bias", [self.n_head, self.d_head],
dtype=self.tf_float,
initializer=self.initializer))
self.seg_embed = self.add_weight(
"seg_embed", [self.n_layer, 2, self.n_head, self.d_head],
dtype=self.tf_float,
initializer=self.initializer)
self.mask_emb = self.add_weight(
"mask_emb/mask_emb", shape=[1, 1, self.d_model], dtype=self.tf_float)
self.emb_dropout = tf_keras.layers.Dropout(rate=self.dropout)
self.fwd_position_embedding = RelativePositionEncoding(self.d_model)
self.bwd_position_embedding = RelativePositionEncoding(self.d_model)
self.rel_multihead_layers = []
self.h_positionwise_ffn_layers = []
for i in range(self.n_layer):
self.rel_multihead_layers.append(
RelativeMultiheadAttention(
d_model=self.d_model,
dropout=self.dropout,
n_head=self.n_head,
d_head=self.d_head,
dropout_att=self.dropout_att,
kernel_initializer=self.initializer,
name="layer_%d/rel_attn" % (i)))
self.h_positionwise_ffn_layers.append(
PositionwiseFF(
d_model=self.d_model,
d_inner=self.d_inner,
dropout=self.dropout,
kernel_initializer=self.initializer,
activation_type=self.ff_activation,
name="layer_%d/ff" % (i)))
self.output_dropout = tf_keras.layers.Dropout(rate=self.dropout)
super(TransformerXLModel, self).build(unused_input_shapes)
def __call__(self,
inp_k,
seg_id=None,
input_mask=None,
mems=None,
perm_mask=None,
target_mapping=None,
inp_q=None,
**kwargs):
# Uses dict to feed inputs into call() in order to keep mems as a python
# list.
inputs = {
"inp_k": inp_k,
"seg_id": seg_id,
"input_mask": input_mask,
"mems": mems,
"perm_mask": perm_mask,
"target_mapping": target_mapping,
"inp_q": inp_q
}
return super(TransformerXLModel, self).__call__(inputs, **kwargs)
def call(self, inputs):
"""Implements call() for the layer."""
inp_k = inputs["inp_k"]
seg_id = inputs["seg_id"]
input_mask = inputs["input_mask"]
mems = inputs["mems"]
perm_mask = inputs["perm_mask"]
target_mapping = inputs["target_mapping"]
inp_q = inputs["inp_q"]
new_mems = []
bsz = tf.shape(inp_k)[1]
qlen = inp_k.shape.as_list()[0]
mlen = mems[0].shape.as_list()[0] if mems is not None else 0
klen = mlen + qlen
##### Attention mask
# causal attention mask
if self.attn_type == "uni":
attn_mask = _create_mask(qlen, mlen, self.tf_float, self.same_length)
# pylint: enable=protected-access
attn_mask = attn_mask[:, :, None, None]
elif self.attn_type == "bi":
attn_mask = None
else:
raise ValueError("Unsupported attention type: {}".format(self.attn_type))
# data mask: input mask & perm mask
if input_mask is not None and perm_mask is not None:
data_mask = input_mask[None] + perm_mask
elif input_mask is not None and perm_mask is None:
data_mask = input_mask[None]
elif input_mask is None and perm_mask is not None:
data_mask = perm_mask
else:
data_mask = None
if data_mask is not None:
# all mems can be attended to
mems_mask = tf.zeros([tf.shape(data_mask)[0], mlen, bsz],
dtype=self.tf_float)
data_mask = tf.concat([mems_mask, data_mask], 1)
if attn_mask is None:
attn_mask = data_mask[:, :, :, None]
else:
attn_mask += data_mask[:, :, :, None]
if attn_mask is not None:
attn_mask = tf.cast(attn_mask > 0, dtype=self.tf_float)
if attn_mask is not None:
non_tgt_mask = -tf.eye(qlen, dtype=self.tf_float)
non_tgt_mask = tf.concat(
[tf.zeros([qlen, mlen], dtype=self.tf_float), non_tgt_mask], axis=-1)
non_tgt_mask = tf.cast(
(attn_mask + non_tgt_mask[:, :, None, None]) > 0, dtype=self.tf_float)
else:
non_tgt_mask = None
word_emb_k = self.embedding_lookup(inp_k)
if inp_q is not None:
if target_mapping is not None:
word_emb_q = tf.tile(self.mask_emb,
[tf.shape(target_mapping)[0], bsz, 1])
else:
inp_q_ext = inp_q[:, :, None]
word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k
output_h = self.h_dropout(word_emb_k)
output_g = None
if inp_q is not None:
output_g = self.g_dropout(word_emb_q)
##### Segment embedding
if seg_id is not None:
# Convert `seg_id` to one-hot `seg_mat`
mem_pad = tf.zeros([mlen, bsz], dtype=tf.int32)
cat_id = tf.concat([mem_pad, seg_id], 0)
if self.use_cls_mask:
# `1` indicates not in the same segment [qlen x klen x bsz]
# seg_id: [qlen x bsz] & cat_id: [klen x bsz]
cls_mat = tf.logical_or(
tf.equal(seg_id, tf.constant([data_utils.SEG_ID_CLS]))[:, None],
tf.equal(cat_id, tf.constant([data_utils.SEG_ID_CLS]))[None, :])
seg_mat = tf.equal(seg_id[:, None], cat_id[None, :])
seg_mat = tf.logical_or(cls_mat, seg_mat)
else:
seg_mat = tf.logical_not(tf.equal(seg_id[:, None], cat_id[None, :]))
else:
seg_mat = None
dtype = self.tf_float
freq_seq = tf.range(0, self.d_model, 2.0)
if dtype is not None and dtype != tf.float32:
freq_seq = tf.cast(freq_seq, dtype=self.dtype)
if self.attn_type == "bi":
beg, end = klen, -qlen
elif self.attn_type == "uni":
beg, end = klen, -1
else:
raise ValueError("Unknown `attn_type` {}.".format(self.attn_type))
if self.bi_data:
fwd_pos_seq = tf.range(beg, end, -1.0)
bwd_pos_seq = tf.range(-beg, -end, 1.0)
if dtype is not None and dtype != tf.float32:
fwd_pos_seq = tf.cast(fwd_pos_seq, dtype=dtype)
bwd_pos_seq = tf.cast(bwd_pos_seq, dtype=dtype)
if self.clamp_len > 0:
fwd_pos_seq = tf.clip_by_value(fwd_pos_seq, -self.clamp_len,
self.clamp_len)
bwd_pos_seq = tf.clip_by_value(bwd_pos_seq, -self.clamp_len,
self.clamp_len)
if bsz is not None:
fwd_pos_emb = self.fwd_position_embedding(fwd_pos_seq, bsz // 2)
bwd_pos_emb = self.bwd_position_embedding(bwd_pos_seq, bsz // 2)
else:
fwd_pos_emb = self.fwd_position_embedding(fwd_pos_seq, None)
bwd_pos_emb = self.bwd_position_embedding(bwd_pos_seq, None)
pos_emb = tf.concat([fwd_pos_emb, bwd_pos_emb], axis=1)
else:
fwd_pos_seq = tf.range(beg, end, -1.0)
if dtype is not None and dtype != tf.float32:
fwd_pos_seq = tf.cast(fwd_pos_seq, dtype=dtype)
if self.clamp_len > 0:
fwd_pos_seq = tf.clip_by_value(fwd_pos_seq, -self.clamp_len,
self.lamp_len)
pos_emb = self.fwd_position_embedding(fwd_pos_seq, bsz)
pos_emb = self.emb_dropout(pos_emb)
if mems is None:
mems = [None] * self.n_layer
for i in range(self.n_layer):
# cache new mems
new_mems.append(
_cache_mem(output_h, mems[i], self.mem_len, self.reuse_len))
# pylint: enable=protected-access
# segment bias
if seg_id is None:
r_s_bias_i = None
seg_embed_i = None
else:
r_s_bias_i = self.r_s_bias if not self.untie_r else self.r_s_bias[i]
seg_embed_i = self.seg_embed[i]
ffn_layer = self.h_positionwise_ffn_layers[i]
attention_layer = self.rel_multihead_layers[i]
output_h, output_g = attention_layer(
h=output_h,
g=output_g,
r=pos_emb,
r_w_bias=self.r_w_bias if not self.untie_r else self.r_w_bias[i],
r_r_bias=self.r_r_bias if not self.untie_r else self.r_r_bias[i],
seg_mat=seg_mat,
r_s_bias=r_s_bias_i,
seg_embed=seg_embed_i,
attn_mask_h=non_tgt_mask,
attn_mask_g=attn_mask,
mems=mems[i],
target_mapping=target_mapping)
output_h = ffn_layer(output_h)
if output_g is not None:
output_g = ffn_layer(output_g)
if inp_q is not None:
output = output_g
else:
output = output_h
return output, new_mems, None
class PretrainingXLNetModel(tf_keras.Model):
"""XLNet keras model combined with pretraining LM loss layer.
See the original paper: https://arxiv.org/pdf/1906.08237.pdf
"""
def __init__(self, use_proj, xlnet_config, run_config, use_legacy_mask=True,
**kwargs):
super(PretrainingXLNetModel, self).__init__(**kwargs)
self.run_config = run_config
self.initializer = _get_initializer(run_config)
self.xlnet_config = copy.deepcopy(xlnet_config)
self._use_legacy_mask = use_legacy_mask
self.xlnet_model = networks.XLNetBase(
vocab_size=self.xlnet_config.n_token,
initializer=self.initializer,
attention_type="bi",
num_layers=self.xlnet_config.n_layer,
hidden_size=self.xlnet_config.d_model,
num_attention_heads=self.xlnet_config.n_head,
head_size=self.xlnet_config.d_head,
inner_size=self.xlnet_config.d_inner,
two_stream=True,
tie_attention_biases=not self.xlnet_config.untie_r,
inner_activation=self.xlnet_config.ff_activation,
dropout_rate=self.run_config.dropout,
attention_dropout_rate=self.run_config.dropout_att,
memory_length=self.run_config.mem_len,
reuse_length=self.run_config.reuse_len,
bi_data=self.run_config.bi_data,
clamp_length=self.run_config.clamp_len,
use_cls_mask=self.run_config.use_cls_mask,
name="xlnet_model")
self.lmloss_layer = LMLossLayer(
vocab_size=self.xlnet_config.n_token,
hidden_size=self.xlnet_config.d_model,
initializer=self.initializer,
tie_weight=True,
bi_data=self.run_config.bi_data,
use_one_hot=self.run_config.use_tpu,
use_proj=use_proj,
name="lm_loss")
def call(self, features):
"""Implements call() for the layer."""
input_ids = features["input_ids"]
masked_tokens = features["input_q"]
seg_ids = features["seg_id"]
if self._use_legacy_mask:
# Legacy input mask assumes `real` values are 0 and `padding`
# values are 1.
perm_mask = 1 - features["perm_mask"]
else:
perm_mask = features["perm_mask"]
target_mapping = features["target_mapping"]
# target for LM loss
target = features["target"]
# target mask for LM loss
tgt_mask = features["target_mask"]
mems = features.get("mems", None)
model_output, self.new_mems = self.xlnet_model(
input_ids=input_ids,
segment_ids=seg_ids,
input_mask=None,
state=mems,
permutation_mask=perm_mask,
target_mapping=target_mapping,
masked_tokens=masked_tokens)
lm_loss, _ = self.lmloss_layer(
hidden=model_output,
target=target,
lookup_table=self.xlnet_model.get_embedding_lookup_table(),
target_mask=tgt_mask)
self.add_loss(lm_loss)
return self.new_mems, model_output
class ClassificationXLNetModel(tf_keras.Model):
"""XLNet keras model combined with classification loss layer.
See the original paper: https://arxiv.org/pdf/1906.08237.pdf
"""
def __init__(self, xlnet_config, run_config, n_class, summary_type,
use_legacy_mask=True, **kwargs):
super(ClassificationXLNetModel, self).__init__(**kwargs)
warnings.warn(
"`ClassificationXLNetModel` is deprecated, please use `XLNetClassifier`"
"instead.", DeprecationWarning, stacklevel=2)
self.run_config = run_config
self.initializer = _get_initializer(run_config)
self.xlnet_config = copy.deepcopy(xlnet_config)
self._use_legacy_mask = use_legacy_mask
self.xlnet_model = networks.XLNetBase(
vocab_size=self.xlnet_config.n_token,
initializer=self.initializer,
attention_type="bi",
num_layers=self.xlnet_config.n_layer,
hidden_size=self.xlnet_config.d_model,
num_attention_heads=self.xlnet_config.n_head,
head_size=self.xlnet_config.d_head,
inner_size=self.xlnet_config.d_inner,
two_stream=False,
tie_attention_biases=not self.xlnet_config.untie_r,
inner_activation=self.xlnet_config.ff_activation,
dropout_rate=self.run_config.dropout,
attention_dropout_rate=self.run_config.dropout_att,
memory_length=self.run_config.mem_len,
reuse_length=self.run_config.reuse_len,
bi_data=self.run_config.bi_data,
clamp_length=self.run_config.clamp_len,
use_cls_mask=False,
name="xlnet_model")
self.summarization_layer = Summarization(
hidden_size=self.xlnet_config.d_model,
num_attention_heads=self.xlnet_config.n_head,
head_size=self.xlnet_config.d_head,
dropout_rate=self.run_config.dropout,
attention_dropout_rate=self.run_config.dropout_att,
initializer=self.initializer,
use_proj=True,
summary_type=summary_type,
name="sequence_summary")
self.cl_loss_layer = ClassificationLossLayer(
n_class=n_class, initializer=self.initializer, name="classification")
def call(self, features):
"""Implements call() for the layer."""
batch_size_per_core = tf.shape(features["input_ids"])[0]
input_ids = features["input_ids"]
segment_ids = features["segment_ids"]
if self._use_legacy_mask:
# Legacy input mask assumes `real` values are 0 and `padding`
# values are 1.
input_mask = 1 - features["input_mask"]
else:
input_mask = features["input_mask"]
label = tf.reshape(features["label_ids"], [batch_size_per_core])
mems = features.get("mems", None)
attention_output, new_mems = (
self.xlnet_model(input_ids, segment_ids, input_mask, mems))
summary = self.summarization_layer(attention_output)
per_example_loss, logits = self.cl_loss_layer(hidden=summary, labels=label)
self.add_loss(tf_keras.backend.mean(per_example_loss))
return new_mems, logits
class LMLossLayer(tf_keras.layers.Layer):
"""Layer computing cross entropy loss for language modeling."""
def __init__(self,
vocab_size,
hidden_size,
initializer,
tie_weight=False,
bi_data=True,
use_one_hot=False,
use_proj=False,
**kwargs):
"""Constructs LMLoss layer.
Args:
vocab_size: Number of tokens in vocabulary.
hidden_size: The dimension of model hidden state.
initializer: Initializer used for parameters.
tie_weight: Whether to share weights between embedding lookup layer and
next-token prediction layer.
bi_data: Whether to use bidirectional input pipeline. Usually set to True
during pretraining and False during finetuning.
use_one_hot: bool, whether to use one hot encodings. This should be used
when TPUs are used.
use_proj: bool, whether to add a projection layer before LM prediction.
**kwargs: Other parameters.
"""
super(LMLossLayer, self).__init__(**kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.initializer = initializer
self.tie_weight = tie_weight
self.bi_data = bi_data
self.use_one_hot = use_one_hot
self.use_proj = use_proj
def build(self, unused_input_shapes):
"""Implements build() for the layer."""
if self.use_proj:
self.proj_layer = tf_keras.layers.Dense(
units=self.hidden_size,
kernel_initializer=self.initializer,
activation=gelu,
name="lm_projection/dense")
self.proj_layer_norm = tf_keras.layers.LayerNormalization(
axis=-1, epsilon=1e-12, name="lm_projection/LayerNorm")
if not self.tie_weight:
self.softmax_w = self.add_weight(
"weight",
shape=[self.vocab_size, self.hidden_size],
initializer=self.initializer)
self.softmax_b = self.add_weight(
"bias", shape=[self.vocab_size], initializer=tf.zeros_initializer())
super(LMLossLayer, self).build(unused_input_shapes)
def call(self, hidden, target, lookup_table, target_mask):
"""Implements call() for the layer."""
if self.use_proj:
hidden = self.proj_layer_norm(self.proj_layer(hidden))
if self.tie_weight:
logits = tf.einsum("ibd,nd->ibn", hidden, lookup_table) + self.softmax_b
else:
logits = tf.einsum("ibd,nd->ibn", hidden, self.softmax_w) + self.softmax_b
if self.use_one_hot:
one_hot_target = tf.one_hot(target, self.vocab_size, dtype=logits.dtype)
loss = -tf.reduce_sum(tf.nn.log_softmax(logits) * one_hot_target, -1)
else:
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=target, logits=logits)
total_loss = tf.reduce_sum(loss * target_mask) / tf.reduce_sum(target_mask)
return total_loss, logits
class Summarization(tf_keras.layers.Layer):
"""The layer to pool the output from XLNet model into a vector."""
def __init__(self,
hidden_size,
num_attention_heads,
head_size,
dropout_rate,
attention_dropout_rate,
initializer,
use_proj=True,
summary_type="last",
**kwargs):
"""Constructs Summarization layer.
Args:
hidden_size: int, the dimension of model hidden state.
num_attention_heads: int, the number of attention heads.
head_size: int, the dimension size of each attention head.
dropout_rate: float, dropout rate.
attention_dropout_rate: float, dropout rate on attention probabilities.
initializer: Initializer used for parameters.
use_proj: bool, whether to use projection layer for summarization.
summary_type: Method used to summarize a sequence into a compact vector.
**kwargs: Other parameters.
"""
super(Summarization, self).__init__(**kwargs)
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.head_size = head_size
self.initializer = initializer
self.dropout_rate = dropout_rate
self.attention_dropout_rate = attention_dropout_rate
self.use_proj = use_proj
self.summary_type = summary_type
def build(self, unused_input_shapes):
"""Implements build() for the layer."""
if self.use_proj:
self.proj_layer = tf_keras.layers.Dense(
units=self.hidden_size,
kernel_initializer=self.initializer,
activation=tf.nn.tanh,
name="summary")
self.dropout_layer = tf_keras.layers.Dropout(rate=self.dropout_rate)
super(Summarization, self).build(unused_input_shapes)
def call(self, inputs):
"""Implements call() for the layer."""
if self.summary_type == "last":
summary = inputs[:, -1, :]
elif self.summary_type == "first":
summary = inputs[:, 0, :]
else:
raise ValueError("Invalid summary type provided: %s" % self.summary_type)
if self.use_proj:
summary = self.proj_layer(summary)
summary = self.dropout_layer(summary)
return summary
class ClassificationLossLayer(tf_keras.layers.Layer):
"""Layer computing cross entropy loss for classification task."""
def __init__(self, n_class, initializer, **kwargs):
"""Constructs Summarization layer.
Args:
n_class: Number of tokens in vocabulary.
initializer: Initializer used for parameters.
**kwargs: Other parameters.
"""
super(ClassificationLossLayer, self).__init__(**kwargs)
self.n_class = n_class
self.initializer = initializer
def build(self, unused_input_shapes):
"""Implements build() for the layer."""
self.proj_layer = tf_keras.layers.Dense(
units=self.n_class, kernel_initializer=self.initializer, name="logit")
super(ClassificationLossLayer, self).build(unused_input_shapes)
def call(self, hidden, labels):
"""Implements call() for the layer."""
logits = self.proj_layer(hidden)
one_hot_target = tf.one_hot(labels, self.n_class, dtype=hidden.dtype) # pytype: disable=attribute-error
loss = -tf.reduce_sum(tf.nn.log_softmax(logits) * one_hot_target, -1)
return loss, logits
class QAXLNetModel(tf_keras.Model):
"""XLNet keras model combined with question answering loss layer.
See the original paper: https://arxiv.org/pdf/1906.08237.pdf
"""
def __init__(self, xlnet_config, run_config, start_n_top, end_n_top,
use_legacy_mask=True, **kwargs):
super(QAXLNetModel, self).__init__(**kwargs)
warnings.warn(
"`QAXLNetModel` is deprecated, please use `XLNetSpanLabeler` instead.",
DeprecationWarning, stacklevel=2)
self.run_config = run_config
self.initializer = _get_initializer(run_config)
self.xlnet_config = copy.deepcopy(xlnet_config)
self._use_legacy_mask = use_legacy_mask
self.xlnet_model = networks.XLNetBase(
vocab_size=self.xlnet_config.n_token,
initializer=self.initializer,
attention_type="bi",
num_layers=self.xlnet_config.n_layer,
hidden_size=self.xlnet_config.d_model,
num_attention_heads=self.xlnet_config.n_head,
head_size=self.xlnet_config.d_head,
inner_size=self.xlnet_config.d_inner,
tie_attention_biases=not self.xlnet_config.untie_r,
inner_activation=self.xlnet_config.ff_activation,
dropout_rate=self.run_config.dropout,
attention_dropout_rate=self.run_config.dropout_att,
two_stream=False,
memory_length=self.run_config.mem_len,
reuse_length=self.run_config.reuse_len,
bi_data=self.run_config.bi_data,
clamp_length=self.run_config.clamp_len,
use_cls_mask=False,
name="xlnet_model")
self.qa_loss_layer = QALossLayer(
hidden_size=self.xlnet_config.d_model,
start_n_top=start_n_top,
end_n_top=end_n_top,
initializer=self.initializer,
dropout_rate=self.run_config.dropout,
name="qa_loss_layer")
def call(self, features, training=False):
"""Implements call() for the layer."""
input_ids = features["input_ids"]
segment_ids = features["segment_ids"]
if self._use_legacy_mask:
# Legacy input mask assumes `real` values are 0 and `padding`
# values are 1.
input_mask = 1 - features["input_mask"]
else:
input_mask = features["input_mask"]
cls_index = tf.reshape(features["cls_index"], [-1])
p_mask = features["p_mask"]
attention_output, new_mems = (
self.xlnet_model(input_ids, segment_ids, input_mask))
if training:
loss, logits = self.qa_loss_layer(
hidden=attention_output,
p_mask=p_mask,
cls_index=cls_index,
start_positions=features["start_positions"],
end_positions=features["end_positions"],
is_impossible=features["is_impossible"])
self.add_loss(loss)
return new_mems, logits
else:
results = self.qa_loss_layer(
hidden=attention_output, p_mask=p_mask, cls_index=cls_index)
return results
class QALossLayer(tf_keras.layers.Layer):
"""Layer computing position and regression loss for question answering task."""
def __init__(self, hidden_size, start_n_top, end_n_top, initializer,
dropout_rate, **kwargs):
"""Constructs Summarization layer.
Args:
hidden_size: Int, the hidden size.
start_n_top: Beam size for span start.
end_n_top: Beam size for span end.
initializer: Initializer used for parameters.
dropout_rate: float, dropout rate.
**kwargs: Other parameters.
"""
super(QALossLayer, self).__init__(**kwargs)
self.hidden_size = hidden_size
self.start_n_top = start_n_top
self.end_n_top = end_n_top
self.initializer = initializer
self.dropout_rate = dropout_rate
def build(self, unused_input_shapes):
"""Implements build() for the layer."""
self.start_logits_proj_layer = tf_keras.layers.Dense(
units=1, kernel_initializer=self.initializer, name="start_logits/dense")
self.end_logits_proj_layer0 = tf_keras.layers.Dense(
units=self.hidden_size,
kernel_initializer=self.initializer,
activation=tf.nn.tanh,
name="end_logits/dense_0")
self.end_logits_proj_layer1 = tf_keras.layers.Dense(
units=1, kernel_initializer=self.initializer, name="end_logits/dense_1")
self.end_logits_layer_norm = tf_keras.layers.LayerNormalization(
axis=-1, epsilon=1e-12, name="end_logits/LayerNorm")
self.answer_class_proj_layer0 = tf_keras.layers.Dense(
units=self.hidden_size,
kernel_initializer=self.initializer,
activation=tf.nn.tanh,
name="answer_class/dense_0")
self.answer_class_proj_layer1 = tf_keras.layers.Dense(
units=1,
kernel_initializer=self.initializer,
use_bias=False,
name="answer_class/dense_1")
self.ans_feature_dropout = tf_keras.layers.Dropout(rate=self.dropout_rate)
super(QALossLayer, self).build(unused_input_shapes)
def __call__(self, hidden, p_mask, cls_index, **kwargs):
return super(QALossLayer, self).__call__(
(hidden, p_mask, cls_index, kwargs))
def call(self, inputs, training=False):
"""Implements call() for the layer."""
hidden, p_mask, cls_index, kwargs = inputs
return_dict = {}
seq_len = tf.shape(hidden)[1]
hidden = tf.transpose(hidden, [1, 0, 2])
start_logits = self.start_logits_proj_layer(hidden)
start_logits = tf.transpose(tf.squeeze(start_logits, -1), [1, 0])
start_logits_masked = start_logits * (1 - p_mask) - 1e30 * p_mask
start_log_probs = tf.nn.log_softmax(start_logits_masked, -1)
if training:
start_positions = kwargs["start_positions"]
end_positions = kwargs["end_positions"]
is_impossible = kwargs["is_impossible"]
start_positions = tf.reshape(start_positions, [-1])
start_index = tf.one_hot(
start_positions, depth=seq_len, axis=-1, dtype=tf.float32)
start_features = tf.einsum("lbh,bl->bh", hidden, start_index)
start_features = tf.tile(start_features[None], [seq_len, 1, 1])
end_logits = self.end_logits_proj_layer0(
tf.concat([hidden, start_features], axis=-1))
end_logits = self.end_logits_layer_norm(end_logits)
end_logits = self.end_logits_proj_layer1(end_logits)
end_logits = tf.transpose(tf.squeeze(end_logits, -1), [1, 0])
end_logits_masked = end_logits * (1 - p_mask) - 1e30 * p_mask
end_log_probs = tf.nn.log_softmax(end_logits_masked, -1)
else:
# during inference, compute the end logits based on beam search
start_top_log_probs, start_top_index = tf.nn.top_k(
start_log_probs, k=self.start_n_top)
start_index = tf.one_hot(
start_top_index, depth=seq_len, axis=-1, dtype=tf.float32)
start_features = tf.einsum("lbh,bkl->bkh", hidden, start_index)
end_input = tf.tile(hidden[:, :, None], [1, 1, self.start_n_top, 1])
start_features = tf.tile(start_features[None], [seq_len, 1, 1, 1])
end_input = tf.concat([end_input, start_features], axis=-1)
end_logits = self.end_logits_proj_layer0(end_input)
end_logits = tf.reshape(end_logits, [seq_len, -1, self.hidden_size])
end_logits = self.end_logits_layer_norm(end_logits)
end_logits = tf.reshape(end_logits,
[seq_len, -1, self.start_n_top, self.hidden_size])
end_logits = self.end_logits_proj_layer1(end_logits)
end_logits = tf.reshape(end_logits, [seq_len, -1, self.start_n_top])
end_logits = tf.transpose(end_logits, [1, 2, 0])
end_logits_masked = end_logits * (
1 - p_mask[:, None]) - 1e30 * p_mask[:, None]
end_log_probs = tf.nn.log_softmax(end_logits_masked, -1)
end_top_log_probs, end_top_index = tf.nn.top_k(
end_log_probs, k=self.end_n_top)
end_top_log_probs = tf.reshape(end_top_log_probs,
[-1, self.start_n_top * self.end_n_top])
end_top_index = tf.reshape(end_top_index,
[-1, self.start_n_top * self.end_n_top])
if training:
return_dict["start_log_probs"] = start_log_probs
return_dict["end_log_probs"] = end_log_probs
else:
return_dict["start_top_log_probs"] = start_top_log_probs
return_dict["start_top_index"] = start_top_index
return_dict["end_top_log_probs"] = end_top_log_probs
return_dict["end_top_index"] = end_top_index
# an additional layer to predict answerability
# get the representation of CLS
cls_index = tf.one_hot(cls_index, seq_len, axis=-1, dtype=tf.float32)
cls_feature = tf.einsum("lbh,bl->bh", hidden, cls_index)
# get the representation of START
start_p = tf.nn.softmax(start_logits_masked, axis=-1, name="softmax_start")
start_feature = tf.einsum("lbh,bl->bh", hidden, start_p)
ans_feature = tf.concat([start_feature, cls_feature], -1)
ans_feature = self.answer_class_proj_layer0(ans_feature)
ans_feature = self.ans_feature_dropout(ans_feature)
cls_logits = self.answer_class_proj_layer1(ans_feature)
cls_logits = tf.squeeze(cls_logits, -1)
return_dict["cls_logits"] = cls_logits
if not training:
return return_dict
def compute_loss(log_probs, positions):
one_hot_positions = tf.one_hot(positions, depth=seq_len, dtype=tf.float32)
loss = -tf.reduce_sum(one_hot_positions * log_probs, axis=-1)
loss = tf.reduce_mean(loss)
return loss
start_loss = compute_loss(start_log_probs, start_positions)
end_loss = compute_loss(end_log_probs, end_positions)
total_loss = (start_loss + end_loss) * 0.5
is_impossible = tf.reshape(is_impossible, [-1])
regression_loss = tf.nn.sigmoid_cross_entropy_with_logits(
labels=is_impossible, logits=cls_logits)
regression_loss = tf.reduce_mean(regression_loss)
total_loss += regression_loss * 0.5
return total_loss, cls_logits