Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Configuration definitions for multi-task training.""" | |
import dataclasses | |
from typing import Optional, Tuple | |
from official.core import config_definitions as cfg | |
from official.modeling import hyperparams | |
from official.modeling.privacy import configs as dp_configs | |
class TaskRoutine(hyperparams.Config): | |
# TODO(hongkuny): deprecate the task_name once we migrated client code. | |
task_name: str = "" | |
task_config: cfg.TaskConfig = None | |
eval_steps: Optional[int] = None | |
task_weight: Optional[float] = 1.0 | |
class MultiTaskConfig(hyperparams.Config): | |
init_checkpoint: str = "" | |
model: hyperparams.Config = None | |
task_routines: Tuple[TaskRoutine, ...] = () | |
# Configs for differential privacy | |
# These configs are only effective if you use create_optimizer in | |
# tensorflow_models/official/core/base_task.py | |
# DEPRECATED b/264611883 | |
differential_privacy_config: Optional[ | |
dp_configs.DifferentialPrivacyConfig] = None | |
class ProportionalSampleConfig(hyperparams.Config): | |
alpha: float = 1.0 | |
class AnnealingSampleConfig(hyperparams.Config): | |
steps_per_epoch: int = 5 | |
total_steps: int = 20 | |
class TaskSamplingConfig(hyperparams.OneOfConfig): | |
type: str = "" | |
uniform: hyperparams.Config = dataclasses.field( | |
default_factory=hyperparams.Config | |
) | |
proportional: ProportionalSampleConfig = dataclasses.field( | |
default_factory=ProportionalSampleConfig | |
) | |
annealing: AnnealingSampleConfig = dataclasses.field( | |
default_factory=AnnealingSampleConfig | |
) | |
class MultiTaskTrainerConfig(cfg.TrainerConfig): | |
trainer_type: str = "interleaving" | |
task_sampler: TaskSamplingConfig = dataclasses.field( | |
default_factory=lambda: TaskSamplingConfig(type="proportional") | |
) | |
class MultiTaskExperimentConfig(hyperparams.Config): | |
"""An experiment config for multi-task training and multi-task evaluation.""" | |
task: MultiTaskConfig = dataclasses.field(default_factory=MultiTaskConfig) | |
trainer: MultiTaskTrainerConfig = dataclasses.field( | |
default_factory=MultiTaskTrainerConfig | |
) | |
runtime: cfg.RuntimeConfig = dataclasses.field( | |
default_factory=cfg.RuntimeConfig | |
) | |
class MultiEvalExperimentConfig(cfg.ExperimentConfig): | |
"""An experiment config for single-task training and multi-task evaluation. | |
Attributes: | |
eval_tasks: individual evaluation tasks. | |
""" | |
eval_tasks: Tuple[TaskRoutine, ...] = () | |