deanna-emery's picture
updates
93528c6
raw
history blame
4.31 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for multitask.interleaving_trainer."""
from absl.testing import parameterized
import tensorflow as tf, tf_keras
from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import strategy_combinations
from official.modeling.multitask import configs
from official.modeling.multitask import interleaving_trainer
from official.modeling.multitask import multitask
from official.modeling.multitask import task_sampler
from official.modeling.multitask import test_utils
def all_strategy_combinations():
return combinations.combine(
distribution=[
strategy_combinations.default_strategy,
strategy_combinations.cloud_tpu_strategy,
strategy_combinations.one_device_strategy_gpu,
],
mode="eager",
)
class InterleavingTrainerTest(tf.test.TestCase, parameterized.TestCase):
@combinations.generate(all_strategy_combinations())
def test_multitask_interleaving_trainer(self, distribution):
with distribution.scope():
tasks = [
test_utils.MockFooTask(params=test_utils.FooConfig(), name="foo"),
test_utils.MockBarTask(params=test_utils.BarConfig(), name="bar")
]
test_multitask = multitask.MultiTask(tasks=tasks)
test_optimizer = tf_keras.optimizers.SGD(0.1)
model = test_utils.MockMultiTaskModel()
sampler = task_sampler.UniformTaskSampler(
task_weights=test_multitask.task_weights)
test_trainer = interleaving_trainer.MultiTaskInterleavingTrainer(
multi_task=test_multitask,
multi_task_model=model,
optimizer=test_optimizer,
task_sampler=sampler)
results = test_trainer.train(tf.convert_to_tensor(5, dtype=tf.int32))
self.assertContainsSubset(["training_loss", "bar_acc"],
results["bar"].keys())
self.assertContainsSubset(["training_loss", "foo_acc"],
results["foo"].keys())
self.assertNotIn("total_loss", results)
@combinations.generate(all_strategy_combinations())
def test_trainer_with_configs(self, distribution):
config = configs.MultiTaskConfig(
task_routines=(configs.TaskRoutine(
task_name="foo",
task_config=test_utils.FooConfig(),
task_weight=3.0),
configs.TaskRoutine(
task_name="bar",
task_config=test_utils.BarConfig(),
task_weight=1.0)))
with distribution.scope():
test_multitask = multitask.MultiTask.from_config(config)
test_optimizer = tf_keras.optimizers.SGD(0.1)
model = test_utils.MockMultiTaskModel()
num_step = 1000
sampler = task_sampler.AnnealingTaskSampler(
task_weights=test_multitask.task_weights,
steps_per_epoch=num_step/5,
total_steps=num_step)
test_trainer = interleaving_trainer.MultiTaskInterleavingTrainer(
multi_task=test_multitask,
multi_task_model=model,
optimizer=test_optimizer,
task_sampler=sampler)
results = test_trainer.train(tf.convert_to_tensor(num_step, dtype=tf.int32))
self.assertContainsSubset(["training_loss", "bar_acc"],
results["bar"].keys())
self.assertContainsSubset(["training_loss", "foo_acc"],
results["foo"].keys())
self.assertEqual(test_trainer.global_step.numpy(), num_step)
bar_sampled_step = test_trainer.task_step_counter("bar").numpy()
foo_sampled_step = test_trainer.task_step_counter("foo").numpy()
self.assertEqual(bar_sampled_step + foo_sampled_step, num_step)
if __name__ == "__main__":
tf.test.main()