deanna-emery's picture
updates
93528c6
raw
history blame
4.9 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utils to sample tasks for interleaved optimization."""
import abc
from typing import Union, Dict, Text
import tensorflow as tf, tf_keras
from official.modeling.multitask import configs
class TaskSampler(tf.Module, metaclass=abc.ABCMeta):
"""An abstract class defining task sampling API for interleaving trainer."""
def __init__(self, task_weights: Dict[Text, Union[float, int]]):
self._task_weights = task_weights
@property
def task_weights(self):
return self._task_weights
@abc.abstractmethod
def task_cumulative_distribution(self, global_step: tf.Tensor) -> tf.Tensor:
"""Compute cumulative distribution to sample tasks.
It calculates the cumulative distribution of the multinomial task
distribution with respect to which to be sampled against.
Args:
global_step: A tensor indicating current progess of training.
Returns:
A float tensor with shape (#(task), 1) that represents the cumulative
sampling distribution.
"""
pass
class UniformTaskSampler(TaskSampler):
"""Sample all tasks uniformly."""
def __init__(self, task_weights: Dict[Text, Union[float, int]]):
super(UniformTaskSampler, self).__init__(task_weights=task_weights)
self._uniform_cumulative = tf.math.cumsum(
tf.constant(
[1.0 / len(self._task_weights)] * len(self._task_weights),
dtype=tf.float32))
def task_cumulative_distribution(self, global_step: tf.Tensor) -> tf.Tensor:
del global_step
return self._uniform_cumulative
class ProportionalTaskSampler(TaskSampler):
"""Sample tasks proportional to task weights."""
def __init__(self,
task_weights: Dict[Text, Union[float, int]],
alpha: float = 1.0):
super(ProportionalTaskSampler, self).__init__(task_weights=task_weights)
self._alpha = tf.cast(alpha, dtype=tf.float32)
task_weight_dict_ordered_list = tf.constant(
[weight for _, weight in self._task_weights.items()], dtype=tf.float32)
task_sizes = tf.math.pow(task_weight_dict_ordered_list, self._alpha)
task_distribution = task_sizes / tf.reduce_sum(task_sizes)
self._porportional_cumulative = tf.math.cumsum(task_distribution)
def task_cumulative_distribution(self, global_step: tf.Tensor) -> tf.Tensor:
del global_step
return self._porportional_cumulative
class AnnealingTaskSampler(TaskSampler):
"""Sample tasks according to task weights as well as training progress.
See http://proceedings.mlr.press/v97/stickland19a/stickland19a.pdf
"""
def __init__(self,
task_weights: Dict[Text, Union[float, int]],
steps_per_epoch: int,
total_steps: int):
super(AnnealingTaskSampler, self).__init__(task_weights=task_weights)
self._steps_per_epoch = tf.cast(steps_per_epoch, dtype=tf.float32)
self._total_epochs = tf.cast(
total_steps / self._steps_per_epoch, dtype=tf.float32)
def task_cumulative_distribution(self, global_step: tf.Tensor) -> tf.Tensor:
cur_epoch = tf.math.floor(
tf.cast(global_step, dtype=tf.float32) / self._steps_per_epoch)
alpha = 1.0 - 0.8 * (cur_epoch - 1) / (self._total_epochs - 1 + 1e-10)
task_weight_dict_ordered_list = [
weight for _, weight in self._task_weights.items()
]
task_sizes = tf.math.pow(
tf.constant(task_weight_dict_ordered_list, dtype=tf.float32),
tf.cast(alpha, dtype=tf.float32))
dynamic_task_distribution = task_sizes / tf.reduce_sum(task_sizes)
return tf.math.cumsum(dynamic_task_distribution)
def get_task_sampler(config: configs.TaskSamplingConfig,
task_weights: Dict[Text, float]) -> TaskSampler:
"""Utils to create task sampler with configuration and task weights."""
oneof_config = config.get()
if config.type == 'uniform':
return UniformTaskSampler(task_weights=task_weights)
elif config.type == 'proportional':
return ProportionalTaskSampler(
task_weights=task_weights, alpha=oneof_config.alpha)
elif config.type == 'annealing':
return AnnealingTaskSampler(
task_weights=task_weights,
steps_per_epoch=oneof_config.steps_per_epoch,
total_steps=oneof_config.total_steps)
else:
raise RuntimeError('Task sampler type not supported')