Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for multitask.task_sampler.""" | |
import tensorflow as tf, tf_keras | |
from official.modeling.multitask import configs | |
from official.modeling.multitask import task_sampler as sampler | |
class TaskSamplerTest(tf.test.TestCase): | |
def setUp(self): | |
super(TaskSamplerTest, self).setUp() | |
self._task_weights = {'A': 1.0, 'B': 2.0, 'C': 3.0} | |
def test_uniform_sample_distribution(self): | |
uniform_sampler = sampler.get_task_sampler( | |
configs.TaskSamplingConfig(type='uniform'), self._task_weights) | |
for step in range(5): | |
cumulative_distribution = uniform_sampler.task_cumulative_distribution( | |
tf.constant(step, dtype=tf.int64)) | |
self.assertAllClose([0.333333, 0.666666, 1.0], | |
cumulative_distribution.numpy()) | |
def test_proportional_sample_distribution(self): | |
prop_sampler = sampler.get_task_sampler( | |
configs.TaskSamplingConfig( | |
type='proportional', | |
proportional=configs.ProportionalSampleConfig(alpha=2.0)), | |
self._task_weights) | |
# CucmulativeOf(Normalize([1.0^2, 2.0^2, 3.0^2])) | |
for step in range(5): | |
cumulative_distribution = prop_sampler.task_cumulative_distribution( | |
tf.constant(step, dtype=tf.int64)) | |
self.assertAllClose([0.07142857, 0.35714286, 1.0], | |
cumulative_distribution.numpy()) | |
def test_annealing_sample_distribution(self): | |
num_epoch = 3 | |
step_per_epoch = 6 | |
annel_sampler = sampler.get_task_sampler( | |
configs.TaskSamplingConfig( | |
type='annealing', | |
annealing=configs.AnnealingSampleConfig( | |
steps_per_epoch=step_per_epoch, | |
total_steps=step_per_epoch * num_epoch)), self._task_weights) | |
global_step = tf.Variable( | |
0, dtype=tf.int64, name='global_step', trainable=False) | |
expected_cumulative_epochs = [[0.12056106, 0.4387236, 1.0], | |
[0.16666667, 0.5, 1.0], | |
[0.22477472, 0.5654695, 1.0]] | |
for epoch in range(num_epoch): | |
for _ in range(step_per_epoch): | |
cumulative_distribution = annel_sampler.task_cumulative_distribution( | |
tf.constant(global_step, dtype=tf.int64)) | |
global_step.assign_add(1) | |
self.assertAllClose(expected_cumulative_epochs[epoch], | |
cumulative_distribution.numpy()) | |
if __name__ == '__main__': | |
tf.test.main() | |