Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Functions and classes related to training performance.""" | |
from absl import logging | |
import tensorflow as tf, tf_keras | |
def configure_optimizer(optimizer, | |
use_float16=False, | |
loss_scale=None, | |
use_graph_rewrite=None): | |
"""Configures optimizer object with performance options.""" | |
if use_graph_rewrite is not None: | |
logging.warning('`use_graph_rewrite` is deprecated inside ' | |
'`configure_optimizer`. Please remove the usage.') | |
del use_graph_rewrite | |
if use_float16: | |
if loss_scale in (None, 'dynamic'): | |
optimizer = tf_keras.mixed_precision.LossScaleOptimizer(optimizer) | |
else: | |
# loss_scale is a number. We interpret that as a fixed loss scale. | |
optimizer = tf_keras.mixed_precision.LossScaleOptimizer( | |
optimizer, dynamic=False, initial_scale=loss_scale) | |
return optimizer | |
def set_mixed_precision_policy(dtype, loss_scale=None): | |
"""Sets the global `tf_keras.mixed_precision.Policy`.""" | |
# TODO(b/191894773): Remove loss_scale argument | |
assert loss_scale is None, ( | |
'The loss_scale argument must be None. The argument exists for ' | |
'historical reasons and will be removed soon.') | |
if dtype == tf.float16: | |
tf_keras.mixed_precision.set_global_policy('mixed_float16') | |
elif dtype == tf.bfloat16: | |
tf_keras.mixed_precision.set_global_policy('mixed_bfloat16') | |
elif dtype == tf.float32: | |
tf_keras.mixed_precision.set_global_policy('float32') | |
else: | |
raise ValueError('Unexpected dtype: %s' % dtype) | |