Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for tf_utils.""" | |
from absl.testing import parameterized | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from tensorflow.python.distribute import combinations | |
from tensorflow.python.distribute import strategy_combinations | |
from official.modeling import tf_utils | |
def all_strategy_combinations(): | |
return combinations.combine( | |
strategy=[ | |
strategy_combinations.cloud_tpu_strategy, | |
# TODO(b/285797201):disable multi-gpu tests due to hanging. | |
# strategy_combinations.mirrored_strategy_with_two_gpus, | |
], | |
mode='eager', | |
) | |
class TFUtilsTest(tf.test.TestCase, parameterized.TestCase): | |
def test_cross_replica_concat(self, strategy): | |
num_cores = strategy.num_replicas_in_sync | |
shape = (2, 3, 4) | |
def concat(axis): | |
def function(): | |
replica_value = tf.fill(shape, tf_utils.get_replica_id()) | |
return tf_utils.cross_replica_concat(replica_value, axis=axis) | |
return function | |
def expected(axis): | |
values = [np.full(shape, i) for i in range(num_cores)] | |
return np.concatenate(values, axis=axis) | |
per_replica_results = strategy.run(concat(axis=0)) | |
replica_0_result = per_replica_results.values[0].numpy() | |
for value in per_replica_results.values[1:]: | |
self.assertAllClose(value.numpy(), replica_0_result) | |
self.assertAllClose(replica_0_result, expected(axis=0)) | |
replica_0_result = strategy.run(concat(axis=1)).values[0].numpy() | |
self.assertAllClose(replica_0_result, expected(axis=1)) | |
replica_0_result = strategy.run(concat(axis=2)).values[0].numpy() | |
self.assertAllClose(replica_0_result, expected(axis=2)) | |
def test_cross_replica_concat_gradient(self, strategy): | |
num_cores = strategy.num_replicas_in_sync | |
shape = (10, 5) | |
def function(): | |
replica_value = tf.random.normal(shape) | |
with tf.GradientTape() as tape: | |
tape.watch(replica_value) | |
concat_value = tf_utils.cross_replica_concat(replica_value, axis=0) | |
output = tf.reduce_sum(concat_value) | |
return tape.gradient(output, replica_value) | |
per_replica_gradients = strategy.run(function) | |
for gradient in per_replica_gradients.values: | |
self.assertAllClose(gradient, num_cores * tf.ones(shape)) | |
def test_get_activations(self, name, use_keras_layer): | |
fn = tf_utils.get_activation(name, use_keras_layer) | |
self.assertIsNotNone(fn) | |
def test_get_leaky_relu_layer(self, strategy): | |
def forward(x): | |
fn = tf_utils.get_activation( | |
'leaky_relu', use_keras_layer=True, alpha=0.1) | |
return strategy.run(fn, args=(x,)).values[0] | |
got = forward(tf.constant([-1])) | |
self.assertAllClose(got, tf.constant([-0.1])) | |
if __name__ == '__main__': | |
tf.test.main() | |