deanna-emery's picture
updates
93528c6
raw
history blame
21.1 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Keras-based bigbird attention layer."""
import numpy as np
import tensorflow as tf, tf_keras
MAX_SEQ_LEN = 4096
def create_band_mask_from_inputs(from_blocked_mask, to_blocked_mask):
"""Create 3D attention mask from a 2D tensor mask.
Args:
from_blocked_mask: 2D Tensor of shape [batch_size,
from_seq_length//from_block_size, from_block_size].
to_blocked_mask: int32 Tensor of shape [batch_size,
to_seq_length//to_block_size, to_block_size].
Returns:
float Tensor of shape [batch_size, 1, from_seq_length//from_block_size-4,
from_block_size, 3*to_block_size].
"""
exp_blocked_to_pad = tf.concat([
to_blocked_mask[:, 1:-3], to_blocked_mask[:, 2:-2], to_blocked_mask[:,
3:-1]
], 2)
band_mask = tf.einsum("BLQ,BLK->BLQK", from_blocked_mask[:, 2:-2],
exp_blocked_to_pad)
band_mask = tf.expand_dims(band_mask, 1)
return band_mask
def bigbird_block_rand_mask(from_seq_length,
to_seq_length,
from_block_size,
to_block_size,
num_rand_blocks,
last_idx=-1):
"""Create adjacency list of random attention.
Args:
from_seq_length: int. length of from sequence.
to_seq_length: int. length of to sequence.
from_block_size: int. size of block in from sequence.
to_block_size: int. size of block in to sequence.
num_rand_blocks: int. Number of random chunks per row.
last_idx: if -1 then num_rand_blocks blocks chosen anywhere in to sequence,
if positive then num_rand_blocks blocks choosen only upto last_idx.
Returns:
adjacency list of size from_seq_length//from_block_size-2 by num_rand_blocks
"""
assert from_seq_length//from_block_size == to_seq_length//to_block_size, \
"Error the number of blocks needs to be same!"
rand_attn = np.zeros(
(from_seq_length // from_block_size - 2, num_rand_blocks), dtype=np.int32)
middle_seq = np.arange(1, to_seq_length // to_block_size - 1, dtype=np.int32)
last = to_seq_length // to_block_size - 1
if last_idx > (2 * to_block_size):
last = (last_idx // to_block_size) - 1
r = num_rand_blocks # shorthand
for i in range(1, from_seq_length // from_block_size - 1):
start = i - 2
end = i
if i == 1:
rand_attn[i - 1, :] = np.random.permutation(middle_seq[2:last])[:r]
elif i == 2:
rand_attn[i - 1, :] = np.random.permutation(middle_seq[3:last])[:r]
elif i == from_seq_length // from_block_size - 3:
rand_attn[i - 1, :] = np.random.permutation(middle_seq[:last])[:r]
# Missing -3: should have been sliced till last-3
elif i == from_seq_length // from_block_size - 2:
rand_attn[i - 1, :] = np.random.permutation(middle_seq[:last])[:r]
# Missing -4: should have been sliced till last-4
else:
if start > last:
start = last
rand_attn[i - 1, :] = np.random.permutation(middle_seq[:start])[:r]
elif (end + 1) == last:
rand_attn[i - 1, :] = np.random.permutation(middle_seq[:start])[:r]
else:
rand_attn[i - 1, :] = np.random.permutation(
np.concatenate((middle_seq[:start], middle_seq[end + 1:last])))[:r]
return rand_attn
def create_rand_mask_from_inputs(from_blocked_mask, to_blocked_mask, rand_attn,
num_attention_heads, num_rand_blocks,
batch_size, from_seq_length, from_block_size):
"""Create 3D attention mask from a 2D tensor mask.
Args:
from_blocked_mask: 2D Tensor of shape [batch_size,
from_seq_length//from_block_size, from_block_size].
to_blocked_mask: int32 Tensor of shape [batch_size,
to_seq_length//to_block_size, to_block_size].
rand_attn: [batch_size, num_attention_heads,
from_seq_length//from_block_size-2, num_rand_blocks]
num_attention_heads: int. Number of attention heads.
num_rand_blocks: int. Number of random chunks per row.
batch_size: int. Batch size for computation.
from_seq_length: int. length of from sequence.
from_block_size: int. size of block in from sequence.
Returns:
float Tensor of shape [batch_size, num_attention_heads,
from_seq_length//from_block_size-2,
from_block_size, num_rand_blocks*to_block_size].
"""
num_windows = from_seq_length // from_block_size - 2
rand_mask = tf.reshape(
tf.gather(to_blocked_mask, rand_attn, batch_dims=1), [
batch_size, num_attention_heads, num_windows,
num_rand_blocks * from_block_size
])
rand_mask = tf.einsum("BLQ,BHLK->BHLQK", from_blocked_mask[:, 1:-1],
rand_mask)
return rand_mask
def bigbird_block_sparse_attention(
query_layer, key_layer, value_layer, band_mask, from_mask, to_mask,
from_blocked_mask, to_blocked_mask, rand_attn, num_attention_heads,
num_rand_blocks, size_per_head, batch_size, from_seq_length, to_seq_length,
from_block_size, to_block_size):
"""BigBird attention sparse calculation using blocks in linear time.
Assumes from_seq_length//from_block_size == to_seq_length//to_block_size.
Args:
query_layer: float Tensor of shape [batch_size, num_attention_heads,
from_seq_length, size_per_head]
key_layer: float Tensor of shape [batch_size, num_attention_heads,
to_seq_length, size_per_head]
value_layer: float Tensor of shape [batch_size, num_attention_heads,
to_seq_length, size_per_head]
band_mask: (optional) int32 Tensor of shape [batch_size, 1,
from_seq_length//from_block_size-4, from_block_size, 3*to_block_size]. The
values should be 1 or 0. The attention scores will effectively be set to
-infinity for any positions in the mask that are 0, and will be unchanged
for positions that are 1.
from_mask: (optional) int32 Tensor of shape [batch_size, 1, from_seq_length,
1]. The values should be 1 or 0. The attention scores will effectively be
set to -infinity for any positions in the mask that are 0, and will be
unchanged for positions that are 1.
to_mask: (optional) int32 Tensor of shape [batch_size, 1, 1, to_seq_length].
The values should be 1 or 0. The attention scores will effectively be set
to -infinity for any positions in the mask that are 0, and will be
unchanged for positions that are 1.
from_blocked_mask: (optional) int32 Tensor of shape [batch_size,
from_seq_length//from_block_size, from_block_size]. Same as from_mask,
just reshaped.
to_blocked_mask: (optional) int32 Tensor of shape [batch_size,
to_seq_length//to_block_size, to_block_size]. Same as to_mask, just
reshaped.
rand_attn: [batch_size, num_attention_heads,
from_seq_length//from_block_size-2, num_rand_blocks]
num_attention_heads: int. Number of attention heads.
num_rand_blocks: int. Number of random chunks per row.
size_per_head: int. Size of each attention head.
batch_size: int. Batch size for computation.
from_seq_length: int. length of from sequence.
to_seq_length: int. length of to sequence.
from_block_size: int. size of block in from sequence.
to_block_size: int. size of block in to sequence.
Returns:
float Tensor of shape [batch_size, from_seq_length, num_attention_heads,
size_per_head].
"""
rand_attn = tf.expand_dims(rand_attn, 0)
rand_attn = tf.repeat(rand_attn, batch_size, 0)
rand_mask = create_rand_mask_from_inputs(
from_blocked_mask,
to_blocked_mask,
rand_attn,
num_attention_heads,
num_rand_blocks,
batch_size,
from_seq_length,
from_block_size,
)
# Define shorthands
h = num_attention_heads
r = num_rand_blocks
d = size_per_head
b = batch_size
m = from_seq_length
n = to_seq_length
wm = from_block_size
wn = to_block_size
dtype = query_layer.dtype
query_layer = tf.transpose(query_layer, perm=[0, 2, 1, 3])
key_layer = tf.transpose(key_layer, perm=[0, 2, 1, 3])
value_layer = tf.transpose(value_layer, perm=[0, 2, 1, 3])
blocked_query_matrix = tf.reshape(query_layer, (b, h, m // wm, wm, -1))
blocked_key_matrix = tf.reshape(key_layer, (b, h, n // wn, wn, -1))
blocked_value_matrix = tf.reshape(value_layer, (b, h, n // wn, wn, -1))
gathered_key = tf.reshape(
tf.gather(blocked_key_matrix, rand_attn, batch_dims=2, name="gather_key"),
(b, h, m // wm - 2, r * wn, -1)) # [b, h, n//wn-2, r, wn, -1]
gathered_value = tf.reshape(
tf.gather(
blocked_value_matrix, rand_attn, batch_dims=2, name="gather_value"),
(b, h, m // wm - 2, r * wn, -1)) # [b, h, n//wn-2, r, wn, -1]
first_product = tf.einsum(
"BHQD,BHKD->BHQK", blocked_query_matrix[:, :, 0],
key_layer) # [b, h, wm, -1] x [b, h, n, -1] ==> [b, h, wm, n]
first_product = tf.multiply(first_product, 1.0 / np.sqrt(d))
first_product += (1.0 - tf.cast(to_mask, dtype=dtype)) * -10000.0
first_attn_weights = tf.nn.softmax(first_product) # [b, h, wm, n]
first_context_layer = tf.einsum(
"BHQK,BHKD->BHQD", first_attn_weights,
value_layer) # [b, h, wm, n] x [b, h, n, -1] ==> [b, h, wm, -1]
first_context_layer = tf.expand_dims(first_context_layer, 2)
second_key_mat = tf.concat([
blocked_key_matrix[:, :, 0], blocked_key_matrix[:, :, 1],
blocked_key_matrix[:, :, 2], blocked_key_matrix[:, :,
-1], gathered_key[:, :, 0]
], 2) # [b, h, (4+r)*wn, -1]
second_value_mat = tf.concat([
blocked_value_matrix[:, :, 0], blocked_value_matrix[:, :, 1],
blocked_value_matrix[:, :, 2], blocked_value_matrix[:, :, -1],
gathered_value[:, :, 0]
], 2) # [b, h, (4+r)*wn, -1]
second_product = tf.einsum(
"BHQD,BHKD->BHQK", blocked_query_matrix[:, :, 1], second_key_mat
) # [b, h, wm, -1] x [b, h, (4+r)*wn, -1] ==> [b, h, wm, (4+r)*wn]
second_seq_pad = tf.concat([
to_mask[:, :, :, :3 * wn], to_mask[:, :, :, -wn:],
tf.ones([b, 1, 1, r * wn], dtype=dtype)
], 3)
second_rand_pad = tf.concat([
tf.ones([b, h, wm, 4 * wn], dtype=dtype), rand_mask[:, :, 0]
], 3)
second_product = tf.multiply(second_product, 1.0 / np.sqrt(d))
second_product += (1.0 -
tf.minimum(second_seq_pad, second_rand_pad)) * -10000.0
second_attn_weights = tf.nn.softmax(second_product) # [b , h, wm, (4+r)*wn]
second_context_layer = tf.einsum(
"BHQK,BHKD->BHQD", second_attn_weights, second_value_mat
) # [b, h, wm, (4+r)*wn] x [b, h, (4+r)*wn, -1] ==> [b, h, wm, -1]
second_context_layer = tf.expand_dims(second_context_layer, 2)
exp_blocked_key_matrix = tf.concat([
blocked_key_matrix[:, :, 1:-3], blocked_key_matrix[:, :, 2:-2],
blocked_key_matrix[:, :, 3:-1]
], 3) # [b, h, m//wm-4, 3*wn, -1]
exp_blocked_value_matrix = tf.concat([
blocked_value_matrix[:, :, 1:-3], blocked_value_matrix[:, :, 2:-2],
blocked_value_matrix[:, :, 3:-1]
], 3) # [b, h, m//wm-4, 3*wn, -1]
middle_query_matrix = blocked_query_matrix[:, :, 2:-2]
inner_band_product = tf.einsum(
"BHLQD,BHLKD->BHLQK", middle_query_matrix, exp_blocked_key_matrix
) # [b, h, m//wm-4, wm, -1] x [b, h, m//wm-4, 3*wn, -1]
# ==> [b, h, m//wm-4, wm, 3*wn]
inner_band_product = tf.multiply(inner_band_product, 1.0 / np.sqrt(d))
rand_band_product = tf.einsum(
"BHLQD,BHLKD->BHLQK", middle_query_matrix,
gathered_key[:, :,
1:-1]) # [b, h, m//wm-4, wm, -1] x [b, h, m//wm-4, r*wn, -1]
# ==> [b, h, m//wm-4, wm, r*wn]
rand_band_product = tf.multiply(rand_band_product, 1.0 / np.sqrt(d))
first_band_product = tf.einsum(
"BHLQD,BHKD->BHLQK", middle_query_matrix, blocked_key_matrix[:, :, 0]
) # [b, h, m//wm-4, wm, -1] x [b, h, wn, -1] ==> [b, h, m//wm-4, wm, wn]
first_band_product = tf.multiply(first_band_product, 1.0 / np.sqrt(d))
last_band_product = tf.einsum(
"BHLQD,BHKD->BHLQK", middle_query_matrix, blocked_key_matrix[:, :, -1]
) # [b, h, m//wm-4, wm, -1] x [b, h, wn, -1] ==> [b, h, m//wm-4, wm, wn]
last_band_product = tf.multiply(last_band_product, 1.0 / np.sqrt(d))
inner_band_product += (1.0 - band_mask) * -10000.0
first_band_product += (1.0 -
tf.expand_dims(to_mask[:, :, :, :wn], 3)) * -10000.0
last_band_product += (1.0 -
tf.expand_dims(to_mask[:, :, :, -wn:], 3)) * -10000.0
rand_band_product += (1.0 - rand_mask[:, :, 1:-1]) * -10000.0
band_product = tf.concat([
first_band_product, inner_band_product, rand_band_product,
last_band_product
], -1) # [b, h, m//wm-4, wm, (5+r)*wn]
attn_weights = tf.nn.softmax(band_product) # [b, h, m//wm-4, wm, (5+r)*wn]
context_layer = tf.einsum(
"BHLQK,BHLKD->BHLQD", attn_weights[:, :, :, :,
wn:4 * wn], exp_blocked_value_matrix
) # [b, h, m//wm-4, wm, 3*wn] x [b, h, m//wm-4, 3*wn, -1]
# ==> [b, h, m//wm-4, wm, -1]
context_layer += tf.einsum(
"BHLQK,BHLKD->BHLQD", attn_weights[:, :, :, :,
4 * wn:-wn], gathered_value[:, :, 1:-1]
) # [b, h, m//wm-4, wm, r*wn] x [b, h, m//wm-4, r*wn, -1]
# ==> [b, h, m//wm-4, wm, -1]
context_layer += tf.einsum(
"BHLQK,BHKD->BHLQD", attn_weights[:, :, :, :, :wn],
blocked_value_matrix[:, :, 0]
) # [b, h, m//wm-4, wm, wn] x [b, h, wn, -1] ==> [b, h, m//wm-4, wm, -1]
context_layer += tf.einsum(
"BHLQK,BHKD->BHLQD", attn_weights[:, :, :, :,
-wn:], blocked_value_matrix[:, :, -1]
) # [b, h, m//wm-4, wm, wn] x [b, h, wn, -1] ==> [b, h, m//wm-4, wm, -1]
second_last_key_mat = tf.concat([
blocked_key_matrix[:, :, 0], blocked_key_matrix[:, :, -3],
blocked_key_matrix[:, :, -2], blocked_key_matrix[:, :, -1],
gathered_key[:, :, -1]
], 2) # [b, h, (4+r)*wn, -1]
second_last_value_mat = tf.concat([
blocked_value_matrix[:, :, 0], blocked_value_matrix[:, :, -3],
blocked_value_matrix[:, :, -2], blocked_value_matrix[:, :, -1],
gathered_value[:, :, -1]
], 2) # [b, h, (4+r)*wn, -1]
second_last_product = tf.einsum(
"BHQD,BHKD->BHQK", blocked_query_matrix[:, :, -2], second_last_key_mat
) # [b, h, wm, -1] x [b, h, (4+r)*wn, -1] ==> [b, h, wm, (4+r)*wn]
second_last_seq_pad = tf.concat([
to_mask[:, :, :, :wn], to_mask[:, :, :, -3 * wn:],
tf.ones([b, 1, 1, r * wn], dtype=dtype)
], 3)
second_last_rand_pad = tf.concat(
[tf.ones([b, h, wm, 4 * wn], dtype=dtype), rand_mask[:, :, -1]], 3)
second_last_product = tf.multiply(second_last_product, 1.0 / np.sqrt(d))
second_last_product += (
1.0 - tf.minimum(second_last_seq_pad, second_last_rand_pad)) * -10000.0
second_last_attn_weights = tf.nn.softmax(
second_last_product) # [b, h, wm, (4+r)*wn]
second_last_context_layer = tf.einsum(
"BHQK,BHKD->BHQD", second_last_attn_weights, second_last_value_mat
) # [b, h, wm, (4+r)*wn] x [b, h, (4+r)*wn, -1] ==> [b, h, wm, -1]
second_last_context_layer = tf.expand_dims(second_last_context_layer, 2)
last_product = tf.einsum(
"BHQD,BHKD->BHQK", blocked_query_matrix[:, :, -1],
key_layer) # [b, h, wm, -1] x [b, h, n, -1] ==> [b, h, wm, n]
last_product = tf.multiply(last_product, 1.0 / np.sqrt(d))
last_product += (1.0 - to_mask) * -10000.0
last_attn_weights = tf.nn.softmax(last_product) # [b, h, wm, n]
last_context_layer = tf.einsum(
"BHQK,BHKD->BHQD", last_attn_weights,
value_layer) # [b, h, wm, n] x [b, h, n, -1] ==> [b, h, wm, -1]
last_context_layer = tf.expand_dims(last_context_layer, 2)
context_layer = tf.concat([
first_context_layer, second_context_layer, context_layer,
second_last_context_layer, last_context_layer
], 2)
context_layer = tf.reshape(context_layer, (b, h, m, -1)) * from_mask
context_layer = tf.transpose(context_layer, (0, 2, 1, 3))
return context_layer
class BigBirdMasks(tf_keras.layers.Layer):
"""Creates bigbird attention masks."""
def __init__(self, block_size, **kwargs):
super().__init__(**kwargs)
self._block_size = block_size
def call(self, inputs, mask):
encoder_shape = tf.shape(mask)
mask = tf.cast(mask, inputs.dtype)
batch_size, seq_length = encoder_shape[0], encoder_shape[1]
# reshape for blocking
blocked_encoder_mask = tf.reshape(
mask, (batch_size, seq_length // self._block_size, self._block_size))
encoder_from_mask = tf.reshape(mask, (batch_size, 1, seq_length, 1))
encoder_to_mask = tf.reshape(mask, (batch_size, 1, 1, seq_length))
band_mask = create_band_mask_from_inputs(blocked_encoder_mask,
blocked_encoder_mask)
return [band_mask, encoder_from_mask, encoder_to_mask, blocked_encoder_mask]
@tf_keras.utils.register_keras_serializable(package="Text")
class BigBirdAttention(tf_keras.layers.MultiHeadAttention):
"""BigBird, a sparse attention mechanism.
This layer follows the paper "Big Bird: Transformers for Longer Sequences"
(https://arxiv.org/abs/2007.14062).
It reduces this quadratic dependency of attention
computation to linear.
Arguments are the same as `MultiHeadAttention` layer.
"""
def __init__(self,
num_rand_blocks=3,
from_block_size=64,
to_block_size=64,
max_rand_mask_length=MAX_SEQ_LEN,
seed=None,
**kwargs):
super().__init__(**kwargs)
self._num_rand_blocks = num_rand_blocks
self._from_block_size = from_block_size
self._to_block_size = to_block_size
self._seed = seed
# Generates random attention.
np.random.seed(self._seed)
# pylint: disable=g-complex-comprehension
rand_attn = [
bigbird_block_rand_mask(
max_rand_mask_length,
max_rand_mask_length,
from_block_size,
to_block_size,
num_rand_blocks,
last_idx=1024) for _ in range(self._num_heads)
]
# pylint: enable=g-complex-comprehension
rand_attn = np.stack(rand_attn, axis=0)
self.rand_attn = tf.constant(rand_attn, dtype=tf.int32)
def _compute_attention(self, query, key, value, attention_mask=None):
(band_mask, encoder_from_mask, encoder_to_mask,
blocked_encoder_mask) = attention_mask
query_shape = tf.shape(query)
from_seq_length = query_shape[1]
to_seq_length = tf.shape(key)[1]
rand_attn = self.rand_attn[:, :(from_seq_length // self._from_block_size -
2)]
return bigbird_block_sparse_attention(
query,
key,
value,
band_mask,
encoder_from_mask,
encoder_to_mask,
blocked_encoder_mask,
blocked_encoder_mask,
num_attention_heads=self._num_heads,
num_rand_blocks=self._num_rand_blocks,
size_per_head=self._key_dim,
batch_size=query_shape[0],
from_seq_length=from_seq_length,
to_seq_length=to_seq_length,
from_block_size=self._from_block_size,
to_block_size=self._to_block_size,
rand_attn=rand_attn)
def call(self, query, value, key=None, attention_mask=None, **kwargs): # pytype: disable=signature-mismatch # overriding-parameter-count-checks
if not self._built_from_signature:
self._build_from_signature(query=query, value=value, key=key)
if key is None:
key = value
# N = `num_attention_heads`
# H = `size_per_head`
# `query` = [B, T, N ,H]
query = self._query_dense(query)
# `key` = [B, S, N, H]
key = self._key_dense(key)
# `value` = [B, S, N, H]
value = self._value_dense(value)
attention_output = self._compute_attention(query, key, value,
attention_mask)
attention_output.set_shape([None, None, self._num_heads, self._value_dim])
attention_output = self._output_dense(attention_output)
return attention_output
def get_config(self):
config = {
"num_rand_blocks": self._num_rand_blocks,
"from_block_size": self._from_block_size,
"to_block_size": self._to_block_size,
"seed": self._seed
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))