Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for masked language model network.""" | |
from absl.testing import parameterized | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from official.nlp.modeling.layers import masked_lm | |
from official.nlp.modeling.networks import bert_encoder | |
class MaskedLMTest(tf.test.TestCase, parameterized.TestCase): | |
def create_layer(self, | |
vocab_size, | |
hidden_size, | |
output='predictions', | |
xformer_stack=None): | |
# First, create a transformer stack that we can use to get the LM's | |
# vocabulary weight. | |
if xformer_stack is None: | |
xformer_stack = bert_encoder.BertEncoder( | |
vocab_size=vocab_size, | |
num_layers=1, | |
hidden_size=hidden_size, | |
num_attention_heads=4, | |
) | |
# Create a maskedLM from the transformer stack. | |
test_layer = masked_lm.MaskedLM( | |
embedding_table=xformer_stack.get_embedding_table(), output=output) | |
return test_layer | |
def test_layer_creation(self): | |
vocab_size = 100 | |
sequence_length = 32 | |
hidden_size = 64 | |
num_predictions = 21 | |
test_layer = self.create_layer( | |
vocab_size=vocab_size, hidden_size=hidden_size) | |
# Make sure that the output tensor of the masked LM is the right shape. | |
lm_input_tensor = tf_keras.Input(shape=(sequence_length, hidden_size)) | |
masked_positions = tf_keras.Input(shape=(num_predictions,), dtype=tf.int32) | |
output = test_layer(lm_input_tensor, masked_positions=masked_positions) | |
expected_output_shape = [None, num_predictions, vocab_size] | |
self.assertEqual(expected_output_shape, output.shape.as_list()) | |
def test_layer_invocation_with_external_logits(self): | |
vocab_size = 100 | |
sequence_length = 32 | |
hidden_size = 64 | |
num_predictions = 21 | |
xformer_stack = bert_encoder.BertEncoder( | |
vocab_size=vocab_size, | |
num_layers=1, | |
hidden_size=hidden_size, | |
num_attention_heads=4, | |
) | |
test_layer = self.create_layer( | |
vocab_size=vocab_size, | |
hidden_size=hidden_size, | |
xformer_stack=xformer_stack, | |
output='predictions') | |
logit_layer = self.create_layer( | |
vocab_size=vocab_size, | |
hidden_size=hidden_size, | |
xformer_stack=xformer_stack, | |
output='logits') | |
# Create a model from the masked LM layer. | |
lm_input_tensor = tf_keras.Input(shape=(sequence_length, hidden_size)) | |
masked_positions = tf_keras.Input(shape=(num_predictions,), dtype=tf.int32) | |
output = test_layer(lm_input_tensor, masked_positions) | |
logit_output = logit_layer(lm_input_tensor, masked_positions) | |
logit_output = tf_keras.layers.Activation(tf.nn.log_softmax)(logit_output) | |
logit_layer.set_weights(test_layer.get_weights()) | |
model = tf_keras.Model([lm_input_tensor, masked_positions], output) | |
logits_model = tf_keras.Model(([lm_input_tensor, masked_positions]), | |
logit_output) | |
# Invoke the masked LM on some fake data to make sure there are no runtime | |
# errors in the code. | |
batch_size = 3 | |
lm_input_data = 10 * np.random.random_sample( | |
(batch_size, sequence_length, hidden_size)) | |
masked_position_data = np.random.randint( | |
sequence_length, size=(batch_size, num_predictions)) | |
# ref_outputs = model.predict([lm_input_data, masked_position_data]) | |
# outputs = logits_model.predict([lm_input_data, masked_position_data]) | |
ref_outputs = model([lm_input_data, masked_position_data]) | |
outputs = logits_model([lm_input_data, masked_position_data]) | |
# Ensure that the tensor shapes are correct. | |
expected_output_shape = (batch_size, num_predictions, vocab_size) | |
self.assertEqual(expected_output_shape, ref_outputs.shape) | |
self.assertEqual(expected_output_shape, outputs.shape) | |
self.assertAllClose(ref_outputs, outputs) | |
def test_layer_invocation(self, num_predictions): | |
vocab_size = 100 | |
sequence_length = 32 | |
hidden_size = 64 | |
test_layer = self.create_layer( | |
vocab_size=vocab_size, hidden_size=hidden_size) | |
# Create a model from the masked LM layer. | |
lm_input_tensor = tf_keras.Input(shape=(sequence_length, hidden_size)) | |
masked_positions = tf_keras.Input(shape=(num_predictions,), dtype=tf.int32) | |
output = test_layer(lm_input_tensor, masked_positions) | |
model = tf_keras.Model([lm_input_tensor, masked_positions], output) | |
# Invoke the masked LM on some fake data to make sure there are no runtime | |
# errors in the code. | |
batch_size = 3 | |
lm_input_data = 10 * np.random.random_sample( | |
(batch_size, sequence_length, hidden_size)) | |
masked_position_data = np.random.randint( | |
2, size=(batch_size, num_predictions)) | |
res = model.predict([lm_input_data, masked_position_data]) | |
expected_shape = (batch_size, num_predictions, vocab_size) | |
self.assertEqual(expected_shape, res.shape) | |
def test_unknown_output_type_fails(self): | |
with self.assertRaisesRegex(ValueError, 'Unknown `output` value "bad".*'): | |
_ = self.create_layer(vocab_size=8, hidden_size=8, output='bad') | |
if __name__ == '__main__': | |
tf.test.main() | |