deanna-emery's picture
updates
93528c6
raw
history blame
5.95 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for masked language model network."""
from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras
from official.nlp.modeling.layers import masked_lm
from official.nlp.modeling.networks import bert_encoder
class MaskedLMTest(tf.test.TestCase, parameterized.TestCase):
def create_layer(self,
vocab_size,
hidden_size,
output='predictions',
xformer_stack=None):
# First, create a transformer stack that we can use to get the LM's
# vocabulary weight.
if xformer_stack is None:
xformer_stack = bert_encoder.BertEncoder(
vocab_size=vocab_size,
num_layers=1,
hidden_size=hidden_size,
num_attention_heads=4,
)
# Create a maskedLM from the transformer stack.
test_layer = masked_lm.MaskedLM(
embedding_table=xformer_stack.get_embedding_table(), output=output)
return test_layer
def test_layer_creation(self):
vocab_size = 100
sequence_length = 32
hidden_size = 64
num_predictions = 21
test_layer = self.create_layer(
vocab_size=vocab_size, hidden_size=hidden_size)
# Make sure that the output tensor of the masked LM is the right shape.
lm_input_tensor = tf_keras.Input(shape=(sequence_length, hidden_size))
masked_positions = tf_keras.Input(shape=(num_predictions,), dtype=tf.int32)
output = test_layer(lm_input_tensor, masked_positions=masked_positions)
expected_output_shape = [None, num_predictions, vocab_size]
self.assertEqual(expected_output_shape, output.shape.as_list())
def test_layer_invocation_with_external_logits(self):
vocab_size = 100
sequence_length = 32
hidden_size = 64
num_predictions = 21
xformer_stack = bert_encoder.BertEncoder(
vocab_size=vocab_size,
num_layers=1,
hidden_size=hidden_size,
num_attention_heads=4,
)
test_layer = self.create_layer(
vocab_size=vocab_size,
hidden_size=hidden_size,
xformer_stack=xformer_stack,
output='predictions')
logit_layer = self.create_layer(
vocab_size=vocab_size,
hidden_size=hidden_size,
xformer_stack=xformer_stack,
output='logits')
# Create a model from the masked LM layer.
lm_input_tensor = tf_keras.Input(shape=(sequence_length, hidden_size))
masked_positions = tf_keras.Input(shape=(num_predictions,), dtype=tf.int32)
output = test_layer(lm_input_tensor, masked_positions)
logit_output = logit_layer(lm_input_tensor, masked_positions)
logit_output = tf_keras.layers.Activation(tf.nn.log_softmax)(logit_output)
logit_layer.set_weights(test_layer.get_weights())
model = tf_keras.Model([lm_input_tensor, masked_positions], output)
logits_model = tf_keras.Model(([lm_input_tensor, masked_positions]),
logit_output)
# Invoke the masked LM on some fake data to make sure there are no runtime
# errors in the code.
batch_size = 3
lm_input_data = 10 * np.random.random_sample(
(batch_size, sequence_length, hidden_size))
masked_position_data = np.random.randint(
sequence_length, size=(batch_size, num_predictions))
# ref_outputs = model.predict([lm_input_data, masked_position_data])
# outputs = logits_model.predict([lm_input_data, masked_position_data])
ref_outputs = model([lm_input_data, masked_position_data])
outputs = logits_model([lm_input_data, masked_position_data])
# Ensure that the tensor shapes are correct.
expected_output_shape = (batch_size, num_predictions, vocab_size)
self.assertEqual(expected_output_shape, ref_outputs.shape)
self.assertEqual(expected_output_shape, outputs.shape)
self.assertAllClose(ref_outputs, outputs)
@parameterized.named_parameters(
dict(
testcase_name='default',
num_predictions=21,
),
dict(
testcase_name='zero_predictions',
num_predictions=0,
),
)
def test_layer_invocation(self, num_predictions):
vocab_size = 100
sequence_length = 32
hidden_size = 64
test_layer = self.create_layer(
vocab_size=vocab_size, hidden_size=hidden_size)
# Create a model from the masked LM layer.
lm_input_tensor = tf_keras.Input(shape=(sequence_length, hidden_size))
masked_positions = tf_keras.Input(shape=(num_predictions,), dtype=tf.int32)
output = test_layer(lm_input_tensor, masked_positions)
model = tf_keras.Model([lm_input_tensor, masked_positions], output)
# Invoke the masked LM on some fake data to make sure there are no runtime
# errors in the code.
batch_size = 3
lm_input_data = 10 * np.random.random_sample(
(batch_size, sequence_length, hidden_size))
masked_position_data = np.random.randint(
2, size=(batch_size, num_predictions))
res = model.predict([lm_input_data, masked_position_data])
expected_shape = (batch_size, num_predictions, vocab_size)
self.assertEqual(expected_shape, res.shape)
def test_unknown_output_type_fails(self):
with self.assertRaisesRegex(ValueError, 'Unknown `output` value "bad".*'):
_ = self.create_layer(vocab_size=8, hidden_size=8, output='bad')
if __name__ == '__main__':
tf.test.main()