deanna-emery's picture
updates
93528c6
raw
history blame
3.42 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Keras-based attention layer with learnable per dim scaling."""
import gin
import numpy as np
import tensorflow as tf, tf_keras
@gin.configurable
@tf_keras.utils.register_keras_serializable(package='Text')
class PerDimScaleAttention(tf_keras.layers.MultiHeadAttention):
"""Learn scales for individual dims.
It can improve quality but might hurt training stability.
"""
def _build_from_signature(self, query, value, key=None):
super()._build_from_signature(query=query, value=value, key=key) # pytype: disable=attribute-error
self._scale_dim = self._key_dim
with tf.init_scope():
self.per_dim_scale = self.add_weight(
name='per_dim_scale',
shape=(self._scale_dim,),
initializer='zeros',
dtype=self.dtype,
trainable=True)
def _scale_query(self, query):
# 1.0/tf.nn.softplus(0.0) = 1.442695041. Hard code this number so that we
# can avoid unnecessary XLA op fusion mess on TPU.
r_softplus_0 = 1.442695041
scale = tf.constant(
r_softplus_0 / np.sqrt(float(self._scale_dim)), dtype=query.dtype)
scale *= tf.nn.softplus(self.per_dim_scale)
return query * scale
def _compute_attention(self,
query,
key,
value,
attention_mask=None,
training=None):
query = self._scale_query(query)
attention_scores = tf.einsum(self._dot_product_equation, key, query)
attention_scores = self._masked_softmax(attention_scores, attention_mask)
attention_scores_dropout = self._dropout_layer(
attention_scores, training=training)
# `context_layer` = [B, T, N, H]
attention_output = tf.einsum(self._combine_equation,
attention_scores_dropout, value)
return attention_output, attention_scores
def call( # pytype: disable=signature-mismatch # overriding-parameter-count-checks
self,
query,
value,
key=None,
attention_mask=None,
return_attention_scores=False,
training=None,
):
if not self._built_from_signature:
self._build_from_signature(query=query, value=value, key=key)
if key is None:
key = value
# N = `num_attention_heads`
# H = `size_per_head`
# `query` = [B, T, N ,H]
query = self._query_dense(query)
# `key` = [B, S, N, H]
key = self._key_dense(key)
# `value` = [B, S, N, H]
value = self._value_dense(value)
attention_output, attention_scores = self._compute_attention(
query, key, value, attention_mask, training)
attention_output = self._output_dense(attention_output)
if return_attention_scores:
return attention_output, attention_scores
return attention_output