Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Keras-based attention layer with learnable per dim scaling.""" | |
import gin | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
class PerDimScaleAttention(tf_keras.layers.MultiHeadAttention): | |
"""Learn scales for individual dims. | |
It can improve quality but might hurt training stability. | |
""" | |
def _build_from_signature(self, query, value, key=None): | |
super()._build_from_signature(query=query, value=value, key=key) # pytype: disable=attribute-error | |
self._scale_dim = self._key_dim | |
with tf.init_scope(): | |
self.per_dim_scale = self.add_weight( | |
name='per_dim_scale', | |
shape=(self._scale_dim,), | |
initializer='zeros', | |
dtype=self.dtype, | |
trainable=True) | |
def _scale_query(self, query): | |
# 1.0/tf.nn.softplus(0.0) = 1.442695041. Hard code this number so that we | |
# can avoid unnecessary XLA op fusion mess on TPU. | |
r_softplus_0 = 1.442695041 | |
scale = tf.constant( | |
r_softplus_0 / np.sqrt(float(self._scale_dim)), dtype=query.dtype) | |
scale *= tf.nn.softplus(self.per_dim_scale) | |
return query * scale | |
def _compute_attention(self, | |
query, | |
key, | |
value, | |
attention_mask=None, | |
training=None): | |
query = self._scale_query(query) | |
attention_scores = tf.einsum(self._dot_product_equation, key, query) | |
attention_scores = self._masked_softmax(attention_scores, attention_mask) | |
attention_scores_dropout = self._dropout_layer( | |
attention_scores, training=training) | |
# `context_layer` = [B, T, N, H] | |
attention_output = tf.einsum(self._combine_equation, | |
attention_scores_dropout, value) | |
return attention_output, attention_scores | |
def call( # pytype: disable=signature-mismatch # overriding-parameter-count-checks | |
self, | |
query, | |
value, | |
key=None, | |
attention_mask=None, | |
return_attention_scores=False, | |
training=None, | |
): | |
if not self._built_from_signature: | |
self._build_from_signature(query=query, value=value, key=key) | |
if key is None: | |
key = value | |
# N = `num_attention_heads` | |
# H = `size_per_head` | |
# `query` = [B, T, N ,H] | |
query = self._query_dense(query) | |
# `key` = [B, S, N, H] | |
key = self._key_dense(key) | |
# `value` = [B, S, N, H] | |
value = self._value_dense(value) | |
attention_output, attention_scores = self._compute_attention( | |
query, key, value, attention_mask, training) | |
attention_output = self._output_dense(attention_output) | |
if return_attention_scores: | |
return attention_output, attention_scores | |
return attention_output | |