Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Layers for Mixture of Experts (MoE) routing. | |
For MoE routing, we need to separate a set of tokens to sets of tokens. | |
Later on, different sets of tokens can potentially go to different experts. | |
""" | |
import tensorflow as tf, tf_keras | |
class TokenImportanceWithMovingAvg(tf_keras.layers.Layer): | |
"""Routing based on per-token importance value.""" | |
def __init__(self, | |
vocab_size, | |
init_importance, | |
moving_average_beta=0.995, | |
**kwargs): | |
self._vocab_size = vocab_size | |
self._init_importance = init_importance | |
self._moving_average_beta = moving_average_beta | |
super().__init__(**kwargs) | |
def build(self, input_shape): | |
self._importance_embedding = self.add_weight( | |
name="importance_embed", | |
shape=(self._vocab_size), | |
initializer=tf_keras.initializers.Constant(self._init_importance), | |
trainable=False) | |
def get_config(self): | |
config = { | |
"vocab_size": | |
self._vocab_size, | |
"init_importance": | |
self._init_importance, | |
"moving_average_beta": | |
self._moving_average_beta, | |
} | |
base_config = super().get_config() | |
return dict(list(base_config.items()) + list(config.items())) | |
def update_token_importance(self, token_ids, importance): | |
token_ids = tf.reshape(token_ids, shape=[-1]) | |
importance = tf.reshape(importance, shape=[-1]) | |
beta = self._moving_average_beta | |
old_importance = tf.gather(self._importance_embedding, token_ids) | |
self._importance_embedding.assign(tf.tensor_scatter_nd_update( | |
self._importance_embedding, | |
tf.expand_dims(token_ids, axis=1), | |
old_importance * beta + tf.cast(importance * (1.0 - beta), | |
dtype=tf.float32))) | |
def call(self, inputs): | |
return tf.gather(self._importance_embedding, inputs) | |
class SelectTopK(tf_keras.layers.Layer): | |
"""Select top-k + random-k tokens according to importance.""" | |
def __init__(self, | |
top_k=None, | |
random_k=None, | |
**kwargs): | |
self._top_k = top_k | |
self._random_k = random_k | |
super().__init__(**kwargs) | |
def get_config(self): | |
config = { | |
"top_k": | |
self._top_k, | |
"random_k": | |
self._random_k, | |
} | |
base_config = super().get_config() | |
return dict(list(base_config.items()) + list(config.items())) | |
def call(self, inputs): | |
if self._random_k is None: | |
# Pure top-k, not randomness. | |
pos = tf.argsort(inputs, direction="DESCENDING") | |
selected = tf.slice(pos, [0, 0], [-1, self._top_k]) | |
not_selected = tf.slice(pos, [0, self._top_k], [-1, -1]) | |
elif self._top_k is None: | |
# Pure randomness, no top-k. | |
pos = tf.argsort(tf.random.uniform(shape=tf.shape(inputs)), | |
direction="DESCENDING") | |
selected = tf.slice(pos, [0, 0], [-1, self._random_k]) | |
not_selected = tf.slice(pos, [0, self._random_k], [-1, -1]) | |
else: | |
# Top-k plus randomness. | |
pos = tf.argsort(inputs, direction="DESCENDING") | |
selected_top_k = tf.slice(pos, [0, 0], [-1, self._top_k]) | |
pos_left = tf.slice(pos, [0, self._top_k], [-1, -1]) | |
# Randomly shuffle pos_left | |
sort_index = tf.argsort( | |
tf.random.uniform(shape=tf.shape(pos_left)), | |
direction="DESCENDING") | |
pos_left = tf.gather(pos_left, sort_index, batch_dims=1, axis=1) | |
selected_rand = tf.slice(pos_left, [0, 0], [-1, self._random_k]) | |
not_selected = tf.slice(pos_left, [0, self._random_k], [-1, -1]) | |
selected = tf.concat([selected_top_k, selected_rand], axis=1) | |
# Return the indices of selected and not-selected tokens. | |
return selected, not_selected | |