Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for transformer-based bert encoder network.""" | |
# Import libraries | |
from absl.testing import parameterized | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from official.nlp.modeling.networks import bert_encoder | |
class BertEncoderTest(tf.test.TestCase, parameterized.TestCase): | |
def tearDown(self): | |
super(BertEncoderTest, self).tearDown() | |
tf_keras.mixed_precision.set_global_policy("float32") | |
def test_dict_outputs_network_creation(self, encoder_cls): | |
hidden_size = 32 | |
sequence_length = 21 | |
# Create a small BertEncoder for testing. | |
if encoder_cls is bert_encoder.BertEncoderV2: | |
kwargs = {} | |
else: | |
kwargs = dict(dict_outputs=True) | |
test_network = encoder_cls( | |
vocab_size=100, | |
hidden_size=hidden_size, | |
num_attention_heads=2, | |
num_layers=3, | |
**kwargs) | |
# Create the inputs (note that the first dimension is implicit). | |
word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
dict_outputs = test_network( | |
dict(input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids)) | |
data = dict_outputs["sequence_output"] | |
pooled = dict_outputs["pooled_output"] | |
self.assertIsInstance(test_network.transformer_layers, list) | |
self.assertLen(test_network.transformer_layers, 3) | |
self.assertIsInstance(test_network.pooler_layer, tf_keras.layers.Dense) | |
expected_data_shape = [None, sequence_length, hidden_size] | |
expected_pooled_shape = [None, hidden_size] | |
self.assertAllEqual(expected_data_shape, data.shape.as_list()) | |
self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list()) | |
# The default output dtype is float32. | |
self.assertAllEqual(tf.float32, data.dtype) | |
self.assertAllEqual(tf.float32, pooled.dtype) | |
def test_dict_outputs_all_encoder_outputs_network_creation(self, encoder_cls): | |
hidden_size = 32 | |
sequence_length = 21 | |
# Create a small BertEncoder for testing. | |
test_network = encoder_cls( | |
vocab_size=100, | |
hidden_size=hidden_size, | |
num_attention_heads=2, | |
num_layers=3, | |
dict_outputs=True) | |
# Create the inputs (note that the first dimension is implicit). | |
word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
dict_outputs = test_network( | |
dict(input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids)) | |
all_encoder_outputs = dict_outputs["encoder_outputs"] | |
pooled = dict_outputs["pooled_output"] | |
expected_data_shape = [None, sequence_length, hidden_size] | |
expected_pooled_shape = [None, hidden_size] | |
self.assertLen(all_encoder_outputs, 3) | |
for data in all_encoder_outputs: | |
self.assertAllEqual(expected_data_shape, data.shape.as_list()) | |
self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list()) | |
# The default output dtype is float32. | |
self.assertAllEqual(tf.float32, all_encoder_outputs[-1].dtype) | |
self.assertAllEqual(tf.float32, pooled.dtype) | |
def test_dict_outputs_network_creation_return_attention_scores( | |
self, encoder_cls): | |
hidden_size = 32 | |
sequence_length = 21 | |
num_attention_heads = 5 | |
num_layers = 3 | |
# Create a small BertEncoder for testing. | |
test_network = encoder_cls( | |
vocab_size=100, | |
hidden_size=hidden_size, | |
num_attention_heads=num_attention_heads, | |
num_layers=num_layers, | |
return_attention_scores=True, | |
dict_outputs=True) | |
# Create the inputs (note that the first dimension is implicit). | |
word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
dict_outputs = test_network( | |
dict(input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids)) | |
all_attention_outputs = dict_outputs["attention_scores"] | |
expected_data_shape = [ | |
None, num_attention_heads, sequence_length, sequence_length | |
] | |
self.assertLen(all_attention_outputs, num_layers) | |
for data in all_attention_outputs: | |
self.assertAllEqual(expected_data_shape, data.shape.as_list()) | |
# The default output dtype is float32. | |
self.assertAllEqual(tf.float32, all_attention_outputs[-1].dtype) | |
def test_dict_outputs_network_creation_with_float16_dtype(self, encoder_cls): | |
hidden_size = 32 | |
sequence_length = 21 | |
tf_keras.mixed_precision.set_global_policy("mixed_float16") | |
# Create a small BertEncoder for testing. | |
test_network = encoder_cls( | |
vocab_size=100, | |
hidden_size=hidden_size, | |
num_attention_heads=2, | |
num_layers=3, | |
dict_outputs=True) | |
# Create the inputs (note that the first dimension is implicit). | |
word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
dict_outputs = test_network( | |
dict(input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids)) | |
data = dict_outputs["sequence_output"] | |
pooled = dict_outputs["pooled_output"] | |
expected_data_shape = [None, sequence_length, hidden_size] | |
expected_pooled_shape = [None, hidden_size] | |
self.assertAllEqual(expected_data_shape, data.shape.as_list()) | |
self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list()) | |
# If float_dtype is set to float16, the data output is float32 (from a layer | |
# norm) and pool output should be float16. | |
self.assertAllEqual(tf.float32, data.dtype) | |
self.assertAllEqual(tf.float16, pooled.dtype) | |
def test_dict_outputs_network_invocation( | |
self, encoder_cls, output_range, out_seq_len): | |
hidden_size = 32 | |
sequence_length = 21 | |
vocab_size = 57 | |
num_types = 7 | |
# Create a small BertEncoder for testing. | |
test_network = encoder_cls( | |
vocab_size=vocab_size, | |
hidden_size=hidden_size, | |
num_attention_heads=2, | |
num_layers=3, | |
type_vocab_size=num_types, | |
output_range=output_range, | |
dict_outputs=True) | |
# Create the inputs (note that the first dimension is implicit). | |
word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
dict_outputs = test_network( | |
dict(input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids)) | |
data = dict_outputs["sequence_output"] | |
pooled = dict_outputs["pooled_output"] | |
# Create a model based off of this network: | |
model = tf_keras.Model([word_ids, mask, type_ids], [data, pooled]) | |
# Invoke the model. We can't validate the output data here (the model is too | |
# complex) but this will catch structural runtime errors. | |
batch_size = 3 | |
word_id_data = np.random.randint( | |
vocab_size, size=(batch_size, sequence_length)) | |
mask_data = np.random.randint(2, size=(batch_size, sequence_length)) | |
type_id_data = np.random.randint( | |
num_types, size=(batch_size, sequence_length)) | |
outputs = model.predict([word_id_data, mask_data, type_id_data]) | |
self.assertEqual(outputs[0].shape[1], out_seq_len) | |
# Creates a BertEncoder with max_sequence_length != sequence_length | |
max_sequence_length = 128 | |
test_network = encoder_cls( | |
vocab_size=vocab_size, | |
hidden_size=hidden_size, | |
max_sequence_length=max_sequence_length, | |
num_attention_heads=2, | |
num_layers=3, | |
type_vocab_size=num_types, | |
dict_outputs=True) | |
dict_outputs = test_network( | |
dict(input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids)) | |
data = dict_outputs["sequence_output"] | |
pooled = dict_outputs["pooled_output"] | |
model = tf_keras.Model([word_ids, mask, type_ids], [data, pooled]) | |
outputs = model.predict([word_id_data, mask_data, type_id_data]) | |
self.assertEqual(outputs[0].shape[1], sequence_length) | |
# Creates a BertEncoder with embedding_width != hidden_size | |
test_network = encoder_cls( | |
vocab_size=vocab_size, | |
hidden_size=hidden_size, | |
max_sequence_length=max_sequence_length, | |
num_attention_heads=2, | |
num_layers=3, | |
type_vocab_size=num_types, | |
embedding_width=16, | |
dict_outputs=True) | |
dict_outputs = test_network( | |
dict(input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids)) | |
data = dict_outputs["sequence_output"] | |
pooled = dict_outputs["pooled_output"] | |
model = tf_keras.Model([word_ids, mask, type_ids], [data, pooled]) | |
outputs = model.predict([word_id_data, mask_data, type_id_data]) | |
self.assertEqual(outputs[0].shape[-1], hidden_size) | |
self.assertTrue(hasattr(test_network, "_embedding_projection")) | |
def test_embeddings_as_inputs(self): | |
hidden_size = 32 | |
sequence_length = 21 | |
# Create a small BertEncoder for testing. | |
test_network = bert_encoder.BertEncoderV2( | |
vocab_size=100, | |
hidden_size=hidden_size, | |
num_attention_heads=2, | |
num_layers=3) | |
# Create the inputs (note that the first dimension is implicit). | |
word_ids = tf_keras.Input(shape=(sequence_length), dtype=tf.int32) | |
mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
test_network.build( | |
dict(input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids)) | |
embeddings = test_network.get_embedding_layer()(word_ids) | |
# Calls with the embeddings. | |
dict_outputs = test_network( | |
dict( | |
input_word_embeddings=embeddings, | |
input_mask=mask, | |
input_type_ids=type_ids)) | |
all_encoder_outputs = dict_outputs["encoder_outputs"] | |
pooled = dict_outputs["pooled_output"] | |
expected_data_shape = [None, sequence_length, hidden_size] | |
expected_pooled_shape = [None, hidden_size] | |
self.assertLen(all_encoder_outputs, 3) | |
for data in all_encoder_outputs: | |
self.assertAllEqual(expected_data_shape, data.shape.as_list()) | |
self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list()) | |
# The default output dtype is float32. | |
self.assertAllEqual(tf.float32, all_encoder_outputs[-1].dtype) | |
self.assertAllEqual(tf.float32, pooled.dtype) | |
def test_serialize_deserialize(self): | |
# Create a network object that sets all of its config options. | |
kwargs = dict( | |
vocab_size=100, | |
hidden_size=32, | |
num_layers=3, | |
num_attention_heads=2, | |
max_sequence_length=21, | |
type_vocab_size=12, | |
inner_dim=1223, | |
inner_activation="relu", | |
output_dropout=0.05, | |
attention_dropout=0.22, | |
initializer="glorot_uniform", | |
output_range=-1, | |
embedding_width=16, | |
embedding_layer=None, | |
norm_first=False) | |
with self.subTest("BertEncoder"): | |
network = bert_encoder.BertEncoder(**kwargs) | |
# Validate that the config can be forced to JSON. | |
_ = network.to_json() | |
# Tests model saving/loading with SavedModel. | |
model_path = self.get_temp_dir() + "/model" | |
network.save(model_path) | |
_ = tf_keras.models.load_model(model_path) | |
# Test model saving/loading with Keras V3. | |
keras_path = self.get_temp_dir() + "/model.keras" | |
network.save(keras_path) | |
_ = tf_keras.models.load_model(keras_path) | |
with self.subTest("BertEncoderV2"): | |
new_net = bert_encoder.BertEncoderV2(**kwargs) | |
inputs = new_net.inputs | |
outputs = new_net(inputs) | |
network_v2 = tf_keras.Model(inputs=inputs, outputs=outputs) | |
# Validate that the config can be forced to JSON. | |
_ = network_v2.to_json() | |
# Tests model saving/loading with SavedModel. | |
model_path = self.get_temp_dir() + "/v2_model" | |
network_v2.save(model_path) | |
_ = tf_keras.models.load_model(model_path) | |
# Test model saving/loading with Keras V3. | |
keras_path = self.get_temp_dir() + "/v2_model.keras" | |
network_v2.save(keras_path) | |
_ = tf_keras.models.load_model(keras_path) | |
def test_network_creation(self): | |
hidden_size = 32 | |
sequence_length = 21 | |
# Create a small BertEncoder for testing. | |
test_network = bert_encoder.BertEncoder( | |
vocab_size=100, | |
hidden_size=hidden_size, | |
num_attention_heads=2, | |
num_layers=3) | |
# Create the inputs (note that the first dimension is implicit). | |
word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
data, pooled = test_network([word_ids, mask, type_ids]) | |
self.assertIsInstance(test_network.transformer_layers, list) | |
self.assertLen(test_network.transformer_layers, 3) | |
self.assertIsInstance(test_network.pooler_layer, tf_keras.layers.Dense) | |
expected_data_shape = [None, sequence_length, hidden_size] | |
expected_pooled_shape = [None, hidden_size] | |
self.assertAllEqual(expected_data_shape, data.shape.as_list()) | |
self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list()) | |
# The default output dtype is float32. | |
self.assertAllEqual(tf.float32, data.dtype) | |
self.assertAllEqual(tf.float32, pooled.dtype) | |
test_network_dict = bert_encoder.BertEncoder( | |
vocab_size=100, | |
hidden_size=hidden_size, | |
num_attention_heads=2, | |
num_layers=3, | |
dict_outputs=True) | |
# Create the inputs (note that the first dimension is implicit). | |
inputs = dict( | |
input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids) | |
_ = test_network_dict(inputs) | |
test_network_dict.set_weights(test_network.get_weights()) | |
batch_size = 2 | |
vocab_size = 100 | |
num_types = 2 | |
word_id_data = np.random.randint( | |
vocab_size, size=(batch_size, sequence_length)) | |
mask_data = np.random.randint(2, size=(batch_size, sequence_length)) | |
type_id_data = np.random.randint( | |
num_types, size=(batch_size, sequence_length)) | |
list_outputs = test_network([word_id_data, mask_data, type_id_data]) | |
dict_outputs = test_network_dict( | |
dict( | |
input_word_ids=word_id_data, | |
input_mask=mask_data, | |
input_type_ids=type_id_data)) | |
self.assertAllEqual(list_outputs[0], dict_outputs["sequence_output"]) | |
self.assertAllEqual(list_outputs[1], dict_outputs["pooled_output"]) | |
def test_all_encoder_outputs_network_creation(self): | |
hidden_size = 32 | |
sequence_length = 21 | |
# Create a small BertEncoder for testing. | |
test_network = bert_encoder.BertEncoder( | |
vocab_size=100, | |
hidden_size=hidden_size, | |
num_attention_heads=2, | |
num_layers=3, | |
return_all_encoder_outputs=True) | |
# Create the inputs (note that the first dimension is implicit). | |
word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
all_encoder_outputs, pooled = test_network([word_ids, mask, type_ids]) | |
expected_data_shape = [None, sequence_length, hidden_size] | |
expected_pooled_shape = [None, hidden_size] | |
self.assertLen(all_encoder_outputs, 3) | |
for data in all_encoder_outputs: | |
self.assertAllEqual(expected_data_shape, data.shape.as_list()) | |
self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list()) | |
# The default output dtype is float32. | |
self.assertAllEqual(tf.float32, all_encoder_outputs[-1].dtype) | |
self.assertAllEqual(tf.float32, pooled.dtype) | |
def test_attention_scores_output_network_creation(self): | |
hidden_size = 32 | |
sequence_length = 21 | |
num_attention_heads = 5 | |
num_layers = 3 | |
# Create a small BertEncoder for testing. | |
test_network = bert_encoder.BertEncoder( | |
vocab_size=100, | |
hidden_size=hidden_size, | |
num_attention_heads=num_attention_heads, | |
num_layers=num_layers, | |
return_attention_scores=True) | |
# Create the inputs (note that the first dimension is implicit). | |
word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
_, _, all_attention_outputs = test_network([word_ids, mask, type_ids]) | |
expected_data_shape = [ | |
None, num_attention_heads, sequence_length, sequence_length | |
] | |
self.assertLen(all_attention_outputs, num_layers) | |
for data in all_attention_outputs: | |
self.assertAllEqual(expected_data_shape, data.shape.as_list()) | |
# The default output dtype is float32. | |
self.assertAllEqual(tf.float32, all_attention_outputs[-1].dtype) | |
def test_network_creation_with_float16_dtype(self): | |
hidden_size = 32 | |
sequence_length = 21 | |
tf_keras.mixed_precision.set_global_policy("mixed_float16") | |
# Create a small BertEncoder for testing. | |
test_network = bert_encoder.BertEncoder( | |
vocab_size=100, | |
hidden_size=hidden_size, | |
num_attention_heads=2, | |
num_layers=3) | |
# Create the inputs (note that the first dimension is implicit). | |
word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
data, pooled = test_network([word_ids, mask, type_ids]) | |
expected_data_shape = [None, sequence_length, hidden_size] | |
expected_pooled_shape = [None, hidden_size] | |
self.assertAllEqual(expected_data_shape, data.shape.as_list()) | |
self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list()) | |
# If float_dtype is set to float16, the data output is float32 (from a layer | |
# norm) and pool output should be float16. | |
self.assertAllEqual(tf.float32, data.dtype) | |
self.assertAllEqual(tf.float16, pooled.dtype) | |
def test_network_invocation(self, output_range, out_seq_len): | |
hidden_size = 32 | |
sequence_length = 21 | |
vocab_size = 57 | |
num_types = 7 | |
# Create a small BertEncoder for testing. | |
test_network = bert_encoder.BertEncoder( | |
vocab_size=vocab_size, | |
hidden_size=hidden_size, | |
num_attention_heads=2, | |
num_layers=3, | |
type_vocab_size=num_types, | |
output_range=output_range) | |
# Create the inputs (note that the first dimension is implicit). | |
word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
data, pooled = test_network([word_ids, mask, type_ids]) | |
# Create a model based off of this network: | |
model = tf_keras.Model([word_ids, mask, type_ids], [data, pooled]) | |
# Invoke the model. We can't validate the output data here (the model is too | |
# complex) but this will catch structural runtime errors. | |
batch_size = 3 | |
word_id_data = np.random.randint( | |
vocab_size, size=(batch_size, sequence_length)) | |
mask_data = np.random.randint(2, size=(batch_size, sequence_length)) | |
type_id_data = np.random.randint( | |
num_types, size=(batch_size, sequence_length)) | |
outputs = model.predict([word_id_data, mask_data, type_id_data]) | |
self.assertEqual(outputs[0].shape[1], out_seq_len) | |
# Creates a BertEncoder with max_sequence_length != sequence_length | |
max_sequence_length = 128 | |
test_network = bert_encoder.BertEncoder( | |
vocab_size=vocab_size, | |
hidden_size=hidden_size, | |
max_sequence_length=max_sequence_length, | |
num_attention_heads=2, | |
num_layers=3, | |
type_vocab_size=num_types) | |
data, pooled = test_network([word_ids, mask, type_ids]) | |
model = tf_keras.Model([word_ids, mask, type_ids], [data, pooled]) | |
outputs = model.predict([word_id_data, mask_data, type_id_data]) | |
self.assertEqual(outputs[0].shape[1], sequence_length) | |
# Creates a BertEncoder with embedding_width != hidden_size | |
test_network = bert_encoder.BertEncoder( | |
vocab_size=vocab_size, | |
hidden_size=hidden_size, | |
max_sequence_length=max_sequence_length, | |
num_attention_heads=2, | |
num_layers=3, | |
type_vocab_size=num_types, | |
embedding_width=16) | |
data, pooled = test_network([word_ids, mask, type_ids]) | |
model = tf_keras.Model([word_ids, mask, type_ids], [data, pooled]) | |
outputs = model.predict([word_id_data, mask_data, type_id_data]) | |
self.assertEqual(outputs[0].shape[-1], hidden_size) | |
self.assertTrue(hasattr(test_network, "_embedding_projection")) | |
class BertEncoderV2CompatibilityTest(tf.test.TestCase): | |
def tearDown(self): | |
super().tearDown() | |
tf_keras.mixed_precision.set_global_policy("float32") | |
def test_weights_forward_compatible(self): | |
batch_size = 3 | |
hidden_size = 32 | |
sequence_length = 21 | |
vocab_size = 57 | |
num_types = 7 | |
kwargs = dict( | |
vocab_size=vocab_size, | |
hidden_size=hidden_size, | |
num_attention_heads=2, | |
num_layers=3, | |
type_vocab_size=num_types) | |
word_id_data = np.random.randint( | |
vocab_size, size=(batch_size, sequence_length)) | |
mask_data = np.random.randint(2, size=(batch_size, sequence_length)) | |
type_id_data = np.random.randint( | |
num_types, size=(batch_size, sequence_length)) | |
data = dict( | |
input_word_ids=word_id_data, | |
input_mask=mask_data, | |
input_type_ids=type_id_data) | |
# Create small BertEncoders for testing. | |
new_net = bert_encoder.BertEncoderV2(**kwargs) | |
_ = new_net(data) | |
kwargs["dict_outputs"] = True | |
old_net = bert_encoder.BertEncoder(**kwargs) | |
_ = old_net(data) | |
new_net._embedding_layer.set_weights(old_net._embedding_layer.get_weights()) | |
new_net._position_embedding_layer.set_weights( | |
old_net._position_embedding_layer.get_weights()) | |
new_net._type_embedding_layer.set_weights( | |
old_net._type_embedding_layer.get_weights()) | |
new_net._embedding_norm_layer.set_weights( | |
old_net._embedding_norm_layer.get_weights()) | |
# embedding_dropout has no weights. | |
if hasattr(old_net, "_embedding_projection"): | |
new_net._embedding_projection.set_weights( | |
old_net._embedding_projection.get_weights()) | |
# attention_mask_layer has no weights. | |
new_net._pooler_layer.set_weights(old_net._pooler_layer.get_weights()) | |
for otl, ntl in zip(old_net._transformer_layers, | |
new_net._transformer_layers): | |
ntl.set_weights(otl.get_weights()) | |
def check_output_close(data, net1, net2): | |
output1 = net1(data) | |
output2 = net2(data) | |
for key in output1: | |
self.assertAllClose(output1[key], output2[key]) | |
check_output_close(data, old_net, new_net) | |
def test_checkpoint_forward_compatible(self): | |
batch_size = 3 | |
hidden_size = 32 | |
sequence_length = 21 | |
vocab_size = 57 | |
num_types = 7 | |
kwargs = dict( | |
vocab_size=vocab_size, | |
hidden_size=hidden_size, | |
num_attention_heads=2, | |
num_layers=3, | |
type_vocab_size=num_types) | |
word_id_data = np.random.randint( | |
vocab_size, size=(batch_size, sequence_length)) | |
mask_data = np.random.randint(2, size=(batch_size, sequence_length)) | |
type_id_data = np.random.randint( | |
num_types, size=(batch_size, sequence_length)) | |
data = dict( | |
input_word_ids=word_id_data, | |
input_mask=mask_data, | |
input_type_ids=type_id_data) | |
kwargs["dict_outputs"] = True | |
old_net = bert_encoder.BertEncoder(**kwargs) | |
old_net_outputs = old_net(data) | |
ckpt = tf.train.Checkpoint(net=old_net) | |
path = ckpt.save(self.get_temp_dir()) | |
del kwargs["dict_outputs"] | |
new_net = bert_encoder.BertEncoderV2(**kwargs) | |
new_ckpt = tf.train.Checkpoint(net=new_net) | |
status = new_ckpt.restore(path) | |
status.assert_existing_objects_matched() | |
# assert_consumed will fail because the old model has redundant nodes. | |
new_net_outputs = new_net(data) | |
self.assertAllEqual(old_net_outputs.keys(), new_net_outputs.keys()) | |
for key in old_net_outputs: | |
self.assertAllClose(old_net_outputs[key], new_net_outputs[key]) | |
def test_keras_model_checkpoint_forward_compatible(self): | |
batch_size = 3 | |
hidden_size = 32 | |
sequence_length = 21 | |
vocab_size = 57 | |
num_types = 7 | |
kwargs = dict( | |
vocab_size=vocab_size, | |
hidden_size=hidden_size, | |
num_attention_heads=2, | |
num_layers=3, | |
type_vocab_size=num_types, | |
output_range=None) | |
word_id_data = np.random.randint( | |
vocab_size, size=(batch_size, sequence_length)) | |
mask_data = np.random.randint(2, size=(batch_size, sequence_length)) | |
type_id_data = np.random.randint( | |
num_types, size=(batch_size, sequence_length)) | |
data = dict( | |
input_word_ids=word_id_data, | |
input_mask=mask_data, | |
input_type_ids=type_id_data) | |
kwargs["dict_outputs"] = True | |
old_net = bert_encoder.BertEncoder(**kwargs) | |
inputs = old_net.inputs | |
outputs = old_net(inputs) | |
old_model = tf_keras.Model(inputs=inputs, outputs=outputs) | |
old_model_outputs = old_model(data) | |
ckpt = tf.train.Checkpoint(net=old_model) | |
path = ckpt.save(self.get_temp_dir()) | |
del kwargs["dict_outputs"] | |
new_net = bert_encoder.BertEncoderV2(**kwargs) | |
inputs = new_net.inputs | |
outputs = new_net(inputs) | |
new_model = tf_keras.Model(inputs=inputs, outputs=outputs) | |
new_ckpt = tf.train.Checkpoint(net=new_model) | |
status = new_ckpt.restore(path) | |
status.assert_existing_objects_matched() | |
new_model_outputs = new_model(data) | |
self.assertAllEqual(old_model_outputs.keys(), new_model_outputs.keys()) | |
for key in old_model_outputs: | |
self.assertAllClose(old_model_outputs[key], new_model_outputs[key]) | |
if __name__ == "__main__": | |
tf.test.main() | |