ASL-MoViNet-T5-translator / official /nlp /tasks /question_answering_test.py
deanna-emery's picture
updates
93528c6
raw
history blame
10 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for official.nlp.tasks.question_answering."""
import itertools
import json
import os
from absl.testing import parameterized
import tensorflow as tf, tf_keras
from official.nlp.configs import bert
from official.nlp.configs import encoders
from official.nlp.data import question_answering_dataloader
from official.nlp.tasks import masked_lm
from official.nlp.tasks import question_answering
class QuestionAnsweringTaskTest(tf.test.TestCase, parameterized.TestCase):
def setUp(self):
super(QuestionAnsweringTaskTest, self).setUp()
self._encoder_config = encoders.EncoderConfig(
bert=encoders.BertEncoderConfig(vocab_size=30522, num_layers=1))
self._train_data_config = question_answering_dataloader.QADataConfig(
input_path="dummy", seq_length=128, global_batch_size=1)
val_data = {
"version":
"1.1",
"data": [{
"paragraphs": [{
"context":
"Sky is blue.",
"qas": [{
"question":
"What is blue?",
"id":
"1234",
"answers": [{
"text": "Sky",
"answer_start": 0
}, {
"text": "Sky",
"answer_start": 0
}, {
"text": "Sky",
"answer_start": 0
}]
}]
}]
}]
}
self._val_input_path = os.path.join(self.get_temp_dir(), "val_data.json")
with tf.io.gfile.GFile(self._val_input_path, "w") as writer:
writer.write(json.dumps(val_data, indent=4) + "\n")
self._test_vocab = os.path.join(self.get_temp_dir(), "vocab.txt")
with tf.io.gfile.GFile(self._test_vocab, "w") as writer:
writer.write("[PAD]\n[UNK]\n[CLS]\n[SEP]\n[MASK]\nsky\nis\nblue\n")
def _get_validation_data_config(self, version_2_with_negative=False):
return question_answering_dataloader.QADataConfig(
is_training=False,
input_path=self._val_input_path,
input_preprocessed_data_path=self.get_temp_dir(),
seq_length=128,
global_batch_size=1,
version_2_with_negative=version_2_with_negative,
vocab_file=self._test_vocab,
tokenization="WordPiece",
do_lower_case=True)
def _run_task(self, config):
task = question_answering.QuestionAnsweringTask(config)
model = task.build_model()
metrics = task.build_metrics()
task.initialize(model)
train_dataset = task.build_inputs(config.train_data)
train_iterator = iter(train_dataset)
optimizer = tf_keras.optimizers.SGD(lr=0.1)
task.train_step(next(train_iterator), model, optimizer, metrics=metrics)
val_dataset = task.build_inputs(config.validation_data)
val_iterator = iter(val_dataset)
logs = task.validation_step(next(val_iterator), model, metrics=metrics)
# Mock that `logs` is from one replica.
logs = {x: (logs[x],) for x in logs}
logs = task.aggregate_logs(step_outputs=logs)
metrics = task.reduce_aggregated_logs(logs)
self.assertIn("final_f1", metrics)
model.save(os.path.join(self.get_temp_dir(), "saved_model.keras"),
save_format="keras")
@parameterized.parameters(
itertools.product(
(False, True),
("WordPiece", "SentencePiece"),
))
def test_task(self, version_2_with_negative, tokenization):
del tokenization
# Saves a checkpoint.
pretrain_cfg = bert.PretrainerConfig(
encoder=self._encoder_config,
cls_heads=[
bert.ClsHeadConfig(
inner_dim=10, num_classes=3, name="next_sentence")
])
pretrain_model = masked_lm.MaskedLMTask(None).build_model(pretrain_cfg)
ckpt = tf.train.Checkpoint(
model=pretrain_model, **pretrain_model.checkpoint_items)
saved_path = ckpt.save(self.get_temp_dir())
config = question_answering.QuestionAnsweringConfig(
init_checkpoint=saved_path,
model=question_answering.ModelConfig(encoder=self._encoder_config),
train_data=self._train_data_config,
validation_data=self._get_validation_data_config(
version_2_with_negative))
self._run_task(config)
def _export_bert_tfhub(self):
encoder = encoders.build_encoder(
encoders.EncoderConfig(
bert=encoders.BertEncoderConfig(vocab_size=30522, num_layers=1)))
encoder_inputs_dict = {x.name: x for x in encoder.inputs}
encoder_output_dict = encoder(encoder_inputs_dict)
core_model = tf_keras.Model(
inputs=encoder_inputs_dict, outputs=encoder_output_dict)
hub_destination = os.path.join(self.get_temp_dir(), "hub")
core_model.save(hub_destination, include_optimizer=False, save_format="tf")
return hub_destination
def test_task_with_hub(self):
hub_module_url = self._export_bert_tfhub()
config = question_answering.QuestionAnsweringConfig(
hub_module_url=hub_module_url,
model=question_answering.ModelConfig(encoder=self._encoder_config),
train_data=self._train_data_config,
validation_data=self._get_validation_data_config())
self._run_task(config)
@parameterized.named_parameters(("squad1", False), ("squad2", True))
def test_predict(self, version_2_with_negative):
validation_data = self._get_validation_data_config(
version_2_with_negative=version_2_with_negative)
config = question_answering.QuestionAnsweringConfig(
model=question_answering.ModelConfig(encoder=self._encoder_config),
train_data=self._train_data_config,
validation_data=validation_data)
task = question_answering.QuestionAnsweringTask(config)
model = task.build_model()
all_predictions, all_nbest, scores_diff = question_answering.predict(
task, validation_data, model)
self.assertLen(all_predictions, 1)
self.assertLen(all_nbest, 1)
if version_2_with_negative:
self.assertLen(scores_diff, 1)
else:
self.assertEmpty(scores_diff)
class XLNetQuestionAnsweringTaskTest(tf.test.TestCase, parameterized.TestCase):
def setUp(self):
super(XLNetQuestionAnsweringTaskTest, self).setUp()
self._encoder_config = encoders.EncoderConfig(
type="xlnet",
xlnet=encoders.XLNetEncoderConfig(vocab_size=30522, num_layers=1))
self._train_data_config = question_answering_dataloader.QADataConfig(
input_path="dummy", seq_length=128,
global_batch_size=2, xlnet_format=True)
val_data = {
"version":
"2.0",
"data": [{
"paragraphs": [{
"context":
"Sky is blue.",
"qas": [{
"question":
"What is blue?",
"id":
"1234",
"answers": [{
"text": "Sky",
"answer_start": 0
}, {
"text": "Sky",
"answer_start": 0
}, {
"text": "Sky",
"answer_start": 0
}]
}]
}]
}]
}
self._val_input_path = os.path.join(self.get_temp_dir(), "val_data.json")
with tf.io.gfile.GFile(self._val_input_path, "w") as writer:
writer.write(json.dumps(val_data, indent=4) + "\n")
self._test_vocab = os.path.join(self.get_temp_dir(), "vocab.txt")
with tf.io.gfile.GFile(self._test_vocab, "w") as writer:
writer.write("[PAD]\n[UNK]\n[CLS]\n[SEP]\n[MASK]\nsky\nis\nblue\n")
def _get_validation_data_config(self):
return question_answering_dataloader.QADataConfig(
is_training=False,
input_path=self._val_input_path,
input_preprocessed_data_path=self.get_temp_dir(),
seq_length=128,
global_batch_size=2,
version_2_with_negative=True,
vocab_file=self._test_vocab,
tokenization="WordPiece",
do_lower_case=True,
xlnet_format=True)
def _run_task(self, config):
task = question_answering.XLNetQuestionAnsweringTask(config)
model = task.build_model()
metrics = task.build_metrics()
task.initialize(model)
train_dataset = task.build_inputs(config.train_data)
train_iterator = iter(train_dataset)
optimizer = tf_keras.optimizers.SGD(lr=0.1)
task.train_step(next(train_iterator), model, optimizer, metrics=metrics)
val_dataset = task.build_inputs(config.validation_data)
val_iterator = iter(val_dataset)
logs = task.validation_step(next(val_iterator), model, metrics=metrics)
# Mock that `logs` is from one replica.
logs = {x: (logs[x],) for x in logs}
logs = task.aggregate_logs(step_outputs=logs)
metrics = task.reduce_aggregated_logs(logs)
self.assertIn("final_f1", metrics)
self.assertNotIn("loss", metrics)
def test_task(self):
config = question_answering.XLNetQuestionAnsweringConfig(
init_checkpoint="",
n_best_size=5,
model=question_answering.ModelConfig(encoder=self._encoder_config),
train_data=self._train_data_config,
validation_data=self._get_validation_data_config())
self._run_task(config)
if __name__ == "__main__":
tf.test.main()