Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Unit tests for data_pipeline.""" | |
from absl.testing import parameterized | |
import tensorflow as tf, tf_keras | |
from official.recommendation.ranking.configs import config | |
from official.recommendation.ranking.data import data_pipeline | |
class DataPipelineTest(parameterized.TestCase, tf.test.TestCase): | |
def testSyntheticDataPipeline(self, is_training): | |
task = config.Task( | |
model=config.ModelConfig( | |
embedding_dim=4, | |
num_dense_features=8, | |
vocab_sizes=[40, 12, 11, 13, 2, 5], | |
bottom_mlp=[64, 32, 4], | |
top_mlp=[64, 32, 1]), | |
train_data=config.DataConfig(global_batch_size=16), | |
validation_data=config.DataConfig(global_batch_size=16), | |
use_synthetic_data=True) | |
num_dense_features = task.model.num_dense_features | |
num_sparse_features = len(task.model.vocab_sizes) | |
batch_size = task.train_data.global_batch_size | |
if is_training: | |
dataset = data_pipeline.train_input_fn(task) | |
else: | |
dataset = data_pipeline.eval_input_fn(task) | |
dataset_iter = iter(dataset(ctx=None)) | |
# Consume full batches and validate shapes. | |
for _ in range(10): | |
features, label = next(dataset_iter) | |
dense_features = features['dense_features'] | |
sparse_features = features['sparse_features'] | |
self.assertEqual(dense_features.shape, [batch_size, num_dense_features]) | |
self.assertLen(sparse_features, num_sparse_features) | |
for _, val in sparse_features.items(): | |
self.assertEqual(val.shape, [batch_size]) | |
self.assertEqual(label.shape, [batch_size]) | |
if __name__ == '__main__': | |
tf.test.main() | |