Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for segmentation_losses.""" | |
from absl.testing import parameterized | |
import tensorflow as tf, tf_keras | |
from official.vision.losses import segmentation_losses | |
class SegmentationLossTest(parameterized.TestCase, tf.test.TestCase): | |
def testSegmentationLoss(self, use_groundtruth_dimension, | |
use_binary_cross_entropy, top_k_percent_pixels): | |
# [batch, height, width, num_layers]: [2, 3, 4, 1] | |
labels = tf.random.uniform([2, 3, 4, 1], minval=0, maxval=6, dtype=tf.int32) | |
# [batch, height, width, num_classes]: [2, 3, 4, 6] | |
logits = tf.random.uniform([2, 3, 4, 6], | |
minval=-1, | |
maxval=1, | |
dtype=tf.float32) | |
loss = segmentation_losses.SegmentationLoss( | |
label_smoothing=0., | |
class_weights=[], | |
ignore_label=255, | |
use_groundtruth_dimension=use_groundtruth_dimension, | |
use_binary_cross_entropy=use_binary_cross_entropy, | |
top_k_percent_pixels=top_k_percent_pixels)(logits, labels) | |
self.assertEqual(tf.rank(loss), 0) | |
def testSegmentationLossTopK(self): | |
labels = tf.constant([[[[0], [0]], [[0], [2]]]]) | |
logits = tf.constant([[[[100., 0., 0.], [100., 0, 0.]], | |
[[100., 0., 0.], [0., 1., 0.]]]]) | |
loss = segmentation_losses.SegmentationLoss( | |
label_smoothing=0., | |
class_weights=[], | |
ignore_label=255, | |
use_groundtruth_dimension=True, | |
top_k_percent_pixels=0.5)(logits, labels) | |
self.assertAllClose(loss, 0.775718, atol=1e-4) | |
def testSegmentationLossTopKWithIgnoreLabel(self): | |
labels = tf.constant([[[[0], [0]], [[0], [2]]]]) | |
logits = tf.constant([[[[100., 0., 0.], [100., 0, 0.]], | |
[[100., 0., 0.], [0., 1., 0.]]]]) | |
loss = segmentation_losses.SegmentationLoss( | |
label_smoothing=0., | |
class_weights=[], | |
ignore_label=0, | |
use_groundtruth_dimension=True, | |
top_k_percent_pixels=0.5)(logits, labels) | |
self.assertAllClose(loss, 1.551429, atol=1e-4) | |
def testSegmentationLossGroundTruthIsMattingMap(self): | |
# [batch, height, width, num_layers]: [2, 3, 4, 1] | |
labels = tf.random.uniform([2, 3, 4, 1], | |
minval=0, | |
maxval=1, | |
dtype=tf.float32) | |
# [batch, height, width, num_classes]: [2, 3, 4, 2] | |
logits = tf.random.uniform([2, 3, 4, 2], | |
minval=-1, | |
maxval=1, | |
dtype=tf.float32) | |
loss = segmentation_losses.SegmentationLoss( | |
label_smoothing=0., | |
class_weights=[], | |
ignore_label=255, | |
use_groundtruth_dimension=True, | |
use_binary_cross_entropy=False, | |
top_k_percent_pixels=1.)(logits, labels) | |
self.assertEqual(tf.rank(loss), 0) | |
if __name__ == '__main__': | |
tf.test.main() | |