deanna-emery's picture
updates
93528c6
raw
history blame
3.01 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for aspp."""
# Import libraries
from absl.testing import parameterized
import tensorflow as tf, tf_keras
from official.vision.modeling.backbones import resnet
from official.vision.modeling.decoders import aspp
class ASPPTest(parameterized.TestCase, tf.test.TestCase):
@parameterized.parameters(
(3, [6, 12, 18, 24], 128, 'v1'),
(3, [6, 12, 18], 128, 'v1'),
(3, [6, 12], 256, 'v1'),
(4, [6, 12, 18, 24], 128, 'v2'),
(4, [6, 12, 18], 128, 'v2'),
(4, [6, 12], 256, 'v2'),
)
def test_network_creation(self, level, dilation_rates, num_filters,
spp_layer_version):
"""Test creation of ASPP."""
input_size = 256
tf_keras.backend.set_image_data_format('channels_last')
inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1)
backbone = resnet.ResNet(model_id=50)
network = aspp.ASPP(
level=level,
dilation_rates=dilation_rates,
num_filters=num_filters,
spp_layer_version=spp_layer_version)
endpoints = backbone(inputs)
feats = network(endpoints)
self.assertIn(str(level), feats)
self.assertAllEqual(
[1, input_size // 2**level, input_size // 2**level, num_filters],
feats[str(level)].shape.as_list())
def test_serialize_deserialize(self):
# Create a network object that sets all of its config options.
kwargs = dict(
level=3,
dilation_rates=[6, 12],
num_filters=256,
pool_kernel_size=None,
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
activation='relu',
kernel_initializer='VarianceScaling',
kernel_regularizer=None,
interpolation='bilinear',
dropout_rate=0.2,
use_depthwise_convolution='false',
spp_layer_version='v1',
output_tensor=False,
dtype='float32',
name='aspp',
trainable=True)
network = aspp.ASPP(**kwargs)
expected_config = dict(kwargs)
self.assertEqual(network.get_config(), expected_config)
# Create another network object from the first object's config.
new_network = aspp.ASPP.from_config(network.get_config())
# If the serialization was successful, the new config should match the old.
self.assertAllEqual(network.get_config(), new_network.get_config())
if __name__ == '__main__':
tf.test.main()