Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for NAS-FPN.""" | |
# Import libraries | |
from absl.testing import parameterized | |
import tensorflow as tf, tf_keras | |
from official.vision.modeling.backbones import resnet | |
from official.vision.modeling.decoders import nasfpn | |
class NASFPNTest(parameterized.TestCase, tf.test.TestCase): | |
def test_network_creation(self, input_size, min_level, max_level, | |
use_separable_conv): | |
"""Test creation of NAS-FPN.""" | |
tf_keras.backend.set_image_data_format('channels_last') | |
inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1) | |
num_filters = 256 | |
backbone = resnet.ResNet(model_id=50) | |
network = nasfpn.NASFPN( | |
input_specs=backbone.output_specs, | |
min_level=min_level, | |
max_level=max_level, | |
num_filters=num_filters, | |
use_separable_conv=use_separable_conv) | |
endpoints = backbone(inputs) | |
feats = network(endpoints) | |
for level in range(min_level, max_level + 1): | |
self.assertIn(str(level), feats) | |
self.assertAllEqual( | |
[1, input_size // 2**level, input_size // 2**level, num_filters], | |
feats[str(level)].shape.as_list()) | |
if __name__ == '__main__': | |
tf.test.main() | |