Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for anchor_generator.py.""" | |
from absl.testing import parameterized | |
import tensorflow as tf, tf_keras | |
from official.vision.ops import anchor_generator | |
class AnchorGeneratorTest(parameterized.TestCase, tf.test.TestCase): | |
def testAnchorGeneration(self, level, aspect_ratios, expected_boxes): | |
image_size = [64, 64] | |
anchor_size = 2**(level + 1) | |
stride = 2**level | |
anchor_gen = anchor_generator._SingleAnchorGenerator( | |
anchor_size=anchor_size, | |
scales=[1.], | |
aspect_ratios=aspect_ratios, | |
stride=stride, | |
clip_boxes=False) | |
anchors = anchor_gen(image_size).numpy() | |
self.assertAllClose(expected_boxes, anchors) | |
def testAnchorGenerationClipped(self, level, aspect_ratios, expected_boxes): | |
image_size = [64, 64] | |
anchor_size = 2**(level + 1) | |
stride = 2**level | |
anchor_gen = anchor_generator._SingleAnchorGenerator( | |
anchor_size=anchor_size, | |
scales=[1.], | |
aspect_ratios=aspect_ratios, | |
stride=stride, | |
clip_boxes=True) | |
anchors = anchor_gen(image_size).numpy() | |
self.assertAllClose(expected_boxes, anchors) | |
class MultiScaleAnchorGeneratorTest(parameterized.TestCase, tf.test.TestCase): | |
def testAnchorGeneration(self, min_level, max_level, aspect_ratios, | |
expected_boxes): | |
image_size = [64, 64] | |
levels = range(min_level, max_level + 1) | |
anchor_sizes = [2**(level + 1) for level in levels] | |
strides = [2**level for level in levels] | |
anchor_gen = anchor_generator.AnchorGenerator( | |
anchor_sizes=anchor_sizes, | |
scales=[1.], | |
aspect_ratios=aspect_ratios, | |
strides=strides) | |
anchors = anchor_gen(image_size) | |
anchors = [tf.reshape(anchor, [-1, 4]) for anchor in anchors] | |
anchors = tf.concat(anchors, axis=0).numpy() | |
self.assertAllClose(expected_boxes, anchors) | |
def testAnchorGenerationClipped(self, min_level, max_level, aspect_ratios, | |
expected_boxes): | |
image_size = [64, 64] | |
levels = range(min_level, max_level + 1) | |
anchor_sizes = [2**(level + 1) for level in levels] | |
strides = [2**level for level in levels] | |
anchor_gen = anchor_generator.AnchorGenerator( | |
anchor_sizes=anchor_sizes, | |
scales=[1.], | |
aspect_ratios=aspect_ratios, | |
strides=strides, | |
clip_boxes=False) | |
anchors = anchor_gen(image_size) | |
anchors = [tf.reshape(anchor, [-1, 4]) for anchor in anchors] | |
anchors = tf.concat(anchors, axis=0).numpy() | |
self.assertAllClose(expected_boxes, anchors) | |
def testAnchorGenerationDict(self, min_level, max_level, aspect_ratios, | |
expected_boxes): | |
image_size = [64, 64] | |
levels = range(min_level, max_level + 1) | |
anchor_sizes = dict((str(level), 2**(level + 1)) for level in levels) | |
strides = dict((str(level), 2**level) for level in levels) | |
anchor_gen = anchor_generator.AnchorGenerator( | |
anchor_sizes=anchor_sizes, | |
scales=[1.], | |
aspect_ratios=aspect_ratios, | |
strides=strides, | |
clip_boxes=False) | |
anchors = anchor_gen(image_size) | |
for k in expected_boxes.keys(): | |
self.assertAllClose(expected_boxes[k], anchors[k].numpy()) | |
if __name__ == '__main__': | |
tf.test.main() | |