deanna-emery's picture
updates
93528c6
raw
history blame
14.7 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for preprocess_ops.py."""
import io
# Import libraries
from absl.testing import parameterized
import numpy as np
from PIL import Image
import tensorflow as tf, tf_keras
from official.vision.ops import preprocess_ops
def _encode_image(image_array, fmt):
image = Image.fromarray(image_array)
with io.BytesIO() as output:
image.save(output, format=fmt)
return output.getvalue()
class InputUtilsTest(parameterized.TestCase, tf.test.TestCase):
@parameterized.parameters(
([1], 10),
([1, 2], 10),
([1, 2, 3], 10),
([11], 10),
([12, 2], 10),
([13, 2, 3], 10),
)
def test_pad_to_fixed_size(self, input_shape, output_size):
# Copies input shape to padding shape.
clip_shape = input_shape[:]
clip_shape[0] = min(output_size, clip_shape[0])
padding_shape = input_shape[:]
padding_shape[0] = max(output_size - input_shape[0], 0)
expected_outputs = np.concatenate(
[np.ones(clip_shape), np.zeros(padding_shape)], axis=0)
data = tf.ones(input_shape)
output_data = preprocess_ops.clip_or_pad_to_fixed_size(
data, output_size, constant_values=0)
output_data = output_data.numpy()
self.assertAllClose(output_size, output_data.shape[0])
self.assertAllClose(expected_outputs, output_data)
@parameterized.named_parameters(
dict(
testcase_name='no_jittering',
input_size=(100, 200),
desired_size=(20, 10),
aug_scale_max=1.0,
output_scales=(20 / 100, 10 / 200),
),
dict(
testcase_name='with_jittering',
input_size=(100, 200),
desired_size=(20, 10),
aug_scale_max=2.0,
output_scales=(20 / 100, 10 / 200),
),
)
def test_resize_and_crop_image_not_keep_aspect_ratio(
self, input_size, desired_size, aug_scale_max, output_scales
):
image = tf.convert_to_tensor(np.random.rand(*input_size, 3))
resized_image, image_info = preprocess_ops.resize_and_crop_image(
image,
desired_size=desired_size,
padded_size=desired_size,
aug_scale_max=aug_scale_max,
keep_aspect_ratio=False,
)
resized_image_shape = tf.shape(resized_image)
self.assertAllEqual([*desired_size, 3], resized_image_shape.numpy())
if aug_scale_max == 1:
self.assertNDArrayNear(
[input_size, desired_size, output_scales, [0.0, 0.0]],
image_info.numpy(),
1e-5,
)
@parameterized.parameters(
(100, 200, 100, 200, 32, 1.0, 1.0, 128, 224),
(100, 256, 128, 256, 32, 1.0, 1.0, 128, 256),
(200, 512, 200, 128, 32, 0.25, 0.25, 224, 128),
)
def test_resize_and_crop_image_rectangluar_case(self, input_height,
input_width, desired_height,
desired_width, stride,
scale_y, scale_x,
output_height, output_width):
image = tf.convert_to_tensor(
np.random.rand(input_height, input_width, 3))
desired_size = (desired_height, desired_width)
resized_image, image_info = preprocess_ops.resize_and_crop_image(
image,
desired_size=desired_size,
padded_size=preprocess_ops.compute_padded_size(desired_size, stride))
resized_image_shape = tf.shape(resized_image)
self.assertAllEqual(
[output_height, output_width, 3],
resized_image_shape.numpy())
self.assertNDArrayNear(
[[input_height, input_width],
[desired_height, desired_width],
[scale_y, scale_x],
[0.0, 0.0]],
image_info.numpy(),
1e-5)
@parameterized.parameters(
(100, 200, 220, 220, 32, 1.1, 1.1, 224, 224),
(512, 512, 1024, 1024, 32, 2.0, 2.0, 1024, 1024),
)
def test_resize_and_crop_image_square_case(self, input_height, input_width,
desired_height, desired_width,
stride, scale_y, scale_x,
output_height, output_width):
image = tf.convert_to_tensor(
np.random.rand(input_height, input_width, 3))
desired_size = (desired_height, desired_width)
resized_image, image_info = preprocess_ops.resize_and_crop_image(
image,
desired_size=desired_size,
padded_size=preprocess_ops.compute_padded_size(desired_size, stride))
resized_image_shape = tf.shape(resized_image)
self.assertAllEqual(
[output_height, output_width, 3],
resized_image_shape.numpy())
self.assertNDArrayNear(
[[input_height, input_width],
[desired_height, desired_width],
[scale_y, scale_x],
[0.0, 0.0]],
image_info.numpy(),
1e-5)
@parameterized.parameters((1,), (2,))
def test_resize_and_crop_image_tensor_desired_size(self, aug_scale_max):
image = tf.convert_to_tensor(np.random.rand(100, 200, 3))
desired_size = tf.convert_to_tensor((220, 220), dtype=tf.int32)
resized_image, image_info = preprocess_ops.resize_and_crop_image(
image,
desired_size=desired_size,
padded_size=preprocess_ops.compute_padded_size(desired_size, 32),
aug_scale_max=aug_scale_max)
resized_image_shape = tf.shape(resized_image)
self.assertAllEqual([224, 224, 3], resized_image_shape.numpy())
self.assertAllEqual([[100, 200], [220, 220]], image_info[:2].numpy())
if aug_scale_max == 1: # No random jittering.
self.assertNDArrayNear(
[[1.1, 1.1], [0.0, 0.0]],
image_info[2:].numpy(),
1e-5,
)
@parameterized.parameters(
(100, 200, 100, 300, 32, 1.0, 1.0, 100, 200, 128, 320),
(200, 100, 100, 300, 32, 1.0, 1.0, 200, 100, 320, 128),
(100, 200, 80, 100, 32, 0.5, 0.5, 50, 100, 96, 128),
(200, 100, 80, 100, 32, 0.5, 0.5, 100, 50, 128, 96),
)
def test_resize_and_crop_image_v2(self, input_height, input_width, short_side,
long_side, stride, scale_y, scale_x,
desired_height, desired_width,
output_height, output_width):
image = tf.convert_to_tensor(
np.random.rand(input_height, input_width, 3))
image_shape = tf.shape(image)[0:2]
desired_size = tf.where(
tf.greater(image_shape[0], image_shape[1]),
tf.constant([long_side, short_side], dtype=tf.int32),
tf.constant([short_side, long_side], dtype=tf.int32))
resized_image, image_info = preprocess_ops.resize_and_crop_image_v2(
image,
short_side=short_side,
long_side=long_side,
padded_size=preprocess_ops.compute_padded_size(desired_size, stride))
resized_image_shape = tf.shape(resized_image)
self.assertAllEqual(
[output_height, output_width, 3],
resized_image_shape.numpy())
self.assertNDArrayNear(
[[input_height, input_width],
[desired_height, desired_width],
[scale_y, scale_x],
[0.0, 0.0]],
image_info.numpy(),
1e-5)
@parameterized.parameters(
(400, 600), (600, 400),
)
def test_center_crop_image(self, input_height, input_width):
image = tf.convert_to_tensor(
np.random.rand(input_height, input_width, 3))
cropped_image = preprocess_ops.center_crop_image(image)
cropped_image_shape = tf.shape(cropped_image)
self.assertAllEqual([350, 350, 3], cropped_image_shape.numpy())
@parameterized.parameters(
(400, 600), (600, 400),
)
def test_center_crop_image_v2(self, input_height, input_width):
image_bytes = tf.constant(
_encode_image(
np.uint8(np.random.rand(input_height, input_width, 3) * 255),
fmt='JPEG'),
dtype=tf.string)
cropped_image = preprocess_ops.center_crop_image_v2(
image_bytes, tf.constant([input_height, input_width, 3], tf.int32))
cropped_image_shape = tf.shape(cropped_image)
self.assertAllEqual([350, 350, 3], cropped_image_shape.numpy())
@parameterized.parameters(
(400, 600), (600, 400),
)
def test_random_crop_image(self, input_height, input_width):
image = tf.convert_to_tensor(
np.random.rand(input_height, input_width, 3))
_ = preprocess_ops.random_crop_image(image)
@parameterized.parameters(
(400, 600), (600, 400),
)
def test_random_crop_image_v2(self, input_height, input_width):
image_bytes = tf.constant(
_encode_image(
np.uint8(np.random.rand(input_height, input_width, 3) * 255),
fmt='JPEG'),
dtype=tf.string)
_ = preprocess_ops.random_crop_image_v2(
image_bytes, tf.constant([input_height, input_width, 3], tf.int32))
@parameterized.parameters((400, 600, 0), (400, 600, 0.4), (600, 400, 1.4))
def testColorJitter(self, input_height, input_width, color_jitter):
image = tf.convert_to_tensor(np.random.rand(input_height, input_width, 3))
jittered_image = preprocess_ops.color_jitter(image, color_jitter,
color_jitter, color_jitter)
assert jittered_image.shape == image.shape
@parameterized.parameters((400, 600, 0), (400, 600, 0.4), (600, 400, 1))
def testSaturation(self, input_height, input_width, saturation):
image = tf.convert_to_tensor(np.random.rand(input_height, input_width, 3))
jittered_image = preprocess_ops._saturation(image, saturation)
assert jittered_image.shape == image.shape
@parameterized.parameters((640, 640, 20), (1280, 1280, 30))
def test_random_crop(self, input_height, input_width, num_boxes):
image = tf.convert_to_tensor(np.random.rand(input_height, input_width, 3))
boxes_height = np.random.randint(0, input_height, size=(num_boxes, 1))
top = np.random.randint(0, high=(input_height - boxes_height))
down = top + boxes_height
boxes_width = np.random.randint(0, input_width, size=(num_boxes, 1))
left = np.random.randint(0, high=(input_width - boxes_width))
right = left + boxes_width
boxes = tf.constant(
np.concatenate([top, left, down, right], axis=-1), tf.float32)
labels = tf.constant(
np.random.randint(low=0, high=num_boxes, size=(num_boxes,)), tf.int64)
_ = preprocess_ops.random_crop(image, boxes, labels)
@parameterized.parameters(
((640, 640, 3), (1000, 1000), None, (1000, 1000, 3)),
((1280, 640, 3), 320, None, (640, 320, 3)),
((640, 1280, 3), 320, None, (320, 640, 3)),
((640, 640, 3), 320, 100, (100, 100, 3)))
def test_resize_image(self, input_shape, size, max_size, expected_shape):
resized_img, image_info = preprocess_ops.resize_image(
tf.zeros((input_shape)), size, max_size)
self.assertAllEqual(tf.shape(resized_img), expected_shape)
self.assertAllEqual(image_info[0], input_shape[:-1])
self.assertAllEqual(image_info[1], expected_shape[:-1])
self.assertAllEqual(
image_info[2],
np.array(expected_shape[:-1]) / np.array(input_shape[:-1]))
self.assertAllEqual(image_info[3], [0, 0])
def test_resize_and_crop_masks(self):
# shape: (2, 1, 4, 3)
masks = tf.constant([[[
[0, 1, 2],
[3, 4, 5],
[6, 7, 8],
[9, 10, 11],
]], [[
[12, 13, 14],
[15, 16, 17],
[18, 19, 20],
[21, 22, 23],
]]])
output = preprocess_ops.resize_and_crop_masks(
masks, image_scale=[2.0, 0.5], output_size=[2, 3], offset=[1, 0])
# shape: (2, 2, 3, 3)
expected_output = tf.constant([
[
[
[3, 4, 5],
[9, 10, 11],
[0, 0, 0],
],
[
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
],
],
[
[
[15, 16, 17],
[21, 22, 23],
[0, 0, 0],
],
[
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
],
],
])
self.assertAllEqual(expected_output, output)
@parameterized.parameters(
(100, 200, 1.0, 224, 224, 224, 224),
(512, 512, 1.0, 1024, 1024, 1024, 1024),
)
def test_deit3_resize_center_crop(
self, input_height, input_width, center_crop_fraction,
desired_height, desired_width,
output_height, output_width):
# Make sure that with center_crop_ratio = 1; result has desired resolution.
image = tf.convert_to_tensor(
np.random.rand(input_height, input_width, 3))
desired_size = (desired_height, desired_width)
center_cropped = preprocess_ops.center_crop_image(
image,
center_crop_fraction=center_crop_fraction)
resized_image = tf.image.resize(
center_cropped, desired_size, method=tf.image.ResizeMethod.BICUBIC)
resized_image_shape = tf.shape(resized_image)
self.assertAllEqual(
[output_height, output_width, 3],
resized_image_shape.numpy())
@parameterized.product(
prenormalize=[True, False],
dtype=[tf.uint8, tf.float32, tf.float64, tf.float16],
)
def test_normalize_image(self, prenormalize, dtype):
image = tf.constant([[[0, 200, 255]]], dtype=tf.uint8)
image = tf.tile(image, [64, 64, 1])
if dtype != tf.uint8 and prenormalize:
image = image / 255
image = tf.cast(image, dtype=dtype)
if dtype == tf.uint8 or prenormalize:
normalized_image = preprocess_ops.normalize_image(
image, offset=[0.5, 0.5, 0.5], scale=[0.5, 0.5, 0.5]
)
else:
normalized_image = preprocess_ops.normalize_image(
image, offset=[127.0, 127.0, 127.0], scale=[127.0, 127.0, 127.0]
)
max_val = tf.reduce_max(normalized_image)
# If we mistakely use scale=[0.5, 0.5, 0.5] for non-normalized float input,
# the normalized image data will contain very large values (e.g. 500).
tf.assert_greater(2.0, max_val)
if __name__ == '__main__':
tf.test.main()