deanna-emery's picture
updates
93528c6
raw
history blame
2.88 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A script to export a TF-Hub SavedModel."""
from typing import List, Optional
# Import libraries
import tensorflow as tf, tf_keras
from official.core import config_definitions as cfg
from official.vision import configs
from official.vision.modeling import factory
def build_model(batch_size: Optional[int],
input_image_size: List[int],
params: cfg.ExperimentConfig,
num_channels: int = 3,
skip_logits_layer: bool = False) -> tf_keras.Model:
"""Builds a model for TF Hub export.
Args:
batch_size: The batch size of input.
input_image_size: A list of [height, width] specifying the input image size.
params: The config used to train the model.
num_channels: The number of input image channels.
skip_logits_layer: Whether to skip the logits layer for image classification
model. Default is False.
Returns:
A tf_keras.Model instance.
Raises:
ValueError: If the task is not supported.
"""
input_specs = tf_keras.layers.InputSpec(shape=[batch_size] +
input_image_size + [num_channels])
if isinstance(params.task,
configs.image_classification.ImageClassificationTask):
model = factory.build_classification_model(
input_specs=input_specs,
model_config=params.task.model,
l2_regularizer=None,
skip_logits_layer=skip_logits_layer)
else:
raise ValueError('Export module not implemented for {} task.'.format(
type(params.task)))
return model
def export_model_to_tfhub(batch_size: Optional[int],
input_image_size: List[int],
params: cfg.ExperimentConfig,
checkpoint_path: str,
export_path: str,
num_channels: int = 3,
skip_logits_layer: bool = False):
"""Export a TF2 model to TF-Hub."""
model = build_model(batch_size, input_image_size, params, num_channels,
skip_logits_layer)
checkpoint = tf.train.Checkpoint(model=model)
checkpoint.restore(checkpoint_path).assert_existing_objects_matched()
model.save(export_path, include_optimizer=False, save_format='tf')