Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""A script to export a TF-Hub SavedModel.""" | |
from typing import List, Optional | |
# Import libraries | |
import tensorflow as tf, tf_keras | |
from official.core import config_definitions as cfg | |
from official.vision import configs | |
from official.vision.modeling import factory | |
def build_model(batch_size: Optional[int], | |
input_image_size: List[int], | |
params: cfg.ExperimentConfig, | |
num_channels: int = 3, | |
skip_logits_layer: bool = False) -> tf_keras.Model: | |
"""Builds a model for TF Hub export. | |
Args: | |
batch_size: The batch size of input. | |
input_image_size: A list of [height, width] specifying the input image size. | |
params: The config used to train the model. | |
num_channels: The number of input image channels. | |
skip_logits_layer: Whether to skip the logits layer for image classification | |
model. Default is False. | |
Returns: | |
A tf_keras.Model instance. | |
Raises: | |
ValueError: If the task is not supported. | |
""" | |
input_specs = tf_keras.layers.InputSpec(shape=[batch_size] + | |
input_image_size + [num_channels]) | |
if isinstance(params.task, | |
configs.image_classification.ImageClassificationTask): | |
model = factory.build_classification_model( | |
input_specs=input_specs, | |
model_config=params.task.model, | |
l2_regularizer=None, | |
skip_logits_layer=skip_logits_layer) | |
else: | |
raise ValueError('Export module not implemented for {} task.'.format( | |
type(params.task))) | |
return model | |
def export_model_to_tfhub(batch_size: Optional[int], | |
input_image_size: List[int], | |
params: cfg.ExperimentConfig, | |
checkpoint_path: str, | |
export_path: str, | |
num_channels: int = 3, | |
skip_logits_layer: bool = False): | |
"""Export a TF2 model to TF-Hub.""" | |
model = build_model(batch_size, input_image_size, params, num_channels, | |
skip_logits_layer) | |
checkpoint = tf.train.Checkpoint(model=model) | |
checkpoint.restore(checkpoint_path).assert_existing_objects_matched() | |
model.save(export_path, include_optimizer=False, save_format='tf') | |