Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Helper utils for export library.""" | |
from typing import List, Optional | |
import tensorflow as tf, tf_keras | |
# pylint: disable=g-long-lambda | |
def get_image_input_signatures(input_type: str, | |
batch_size: Optional[int], | |
input_image_size: List[int], | |
num_channels: int = 3, | |
input_name: Optional[str] = None): | |
"""Gets input signatures for an image. | |
Args: | |
input_type: A `str`, can be either tf_example, image_bytes, or image_tensor. | |
batch_size: `int` for batch size or None. | |
input_image_size: List[int] for the height and width of the input image. | |
num_channels: `int` for number of channels in the input image. | |
input_name: A `str` to set the input image name in the signature, if None, | |
a default name `inputs` will be used. | |
Returns: | |
tf.TensorSpec of the input tensor. | |
""" | |
if input_type == 'image_tensor': | |
input_signature = tf.TensorSpec( | |
shape=[batch_size] + [None] * len(input_image_size) + [num_channels], | |
dtype=tf.uint8, name=input_name) | |
elif input_type in ['image_bytes', 'serve_examples', 'tf_example']: | |
input_signature = tf.TensorSpec( | |
shape=[batch_size], dtype=tf.string, name=input_name) | |
elif input_type == 'tflite': | |
input_signature = tf.TensorSpec( | |
shape=[1] + input_image_size + [num_channels], | |
dtype=tf.float32, | |
name=input_name) | |
else: | |
raise ValueError('Unrecognized `input_type`') | |
return input_signature | |
def decode_image(encoded_image_bytes: str, | |
input_image_size: List[int], | |
num_channels: int = 3,) -> tf.Tensor: | |
"""Decodes an image bytes to an image tensor. | |
Use `tf.image.decode_image` to decode an image if input is expected to be 2D | |
image; otherwise use `tf.io.decode_raw` to convert the raw bytes to tensor | |
and reshape it to desire shape. | |
Args: | |
encoded_image_bytes: An encoded image string to be decoded. | |
input_image_size: List[int] for the desired input size. This will be used to | |
infer whether the image is 2d or 3d. | |
num_channels: `int` for number of image channels. | |
Returns: | |
A decoded image tensor. | |
""" | |
if len(input_image_size) == 2: | |
# Decode an image if 2D input is expected. | |
image_tensor = tf.image.decode_image( | |
encoded_image_bytes, channels=num_channels) | |
else: | |
# Convert raw bytes into a tensor and reshape it, if not 2D input. | |
image_tensor = tf.io.decode_raw(encoded_image_bytes, out_type=tf.uint8) | |
image_tensor.set_shape([None] * len(input_image_size) + [num_channels]) | |
return image_tensor | |
def decode_image_tf_example(tf_example_string_tensor: tf.train.Example, | |
input_image_size: List[int], | |
num_channels: int = 3, | |
encoded_key: str = 'image/encoded' | |
) -> tf.Tensor: | |
"""Decodes a TF Example to an image tensor.""" | |
keys_to_features = { | |
encoded_key: tf.io.FixedLenFeature((), tf.string, default_value=''), | |
} | |
parsed_tensors = tf.io.parse_single_example( | |
serialized=tf_example_string_tensor, features=keys_to_features) | |
image_tensor = decode_image( | |
parsed_tensors[encoded_key], | |
input_image_size=input_image_size, | |
num_channels=num_channels) | |
return image_tensor | |
def parse_image( | |
inputs, input_type: str, input_image_size: List[int], num_channels: int): | |
"""Parses image.""" | |
if input_type in ['tf_example', 'serve_examples']: | |
decode_image_tf_example_fn = ( | |
lambda x: decode_image_tf_example(x, input_image_size, num_channels)) | |
image_tensor = tf.map_fn( | |
decode_image_tf_example_fn, | |
elems=inputs, | |
fn_output_signature=tf.TensorSpec( | |
shape=[None] * len(input_image_size) + [num_channels], | |
dtype=tf.uint8), | |
) | |
elif input_type == 'image_bytes': | |
decode_image_fn = lambda x: decode_image(x, input_image_size, num_channels) | |
image_tensor = tf.map_fn( | |
decode_image_fn, elems=inputs, | |
fn_output_signature=tf.TensorSpec( | |
shape=[None] * len(input_image_size) + [num_channels], | |
dtype=tf.uint8),) | |
else: | |
image_tensor = inputs | |
return image_tensor | |