Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Test for image classification export lib.""" | |
import io | |
import os | |
from absl.testing import parameterized | |
import numpy as np | |
from PIL import Image | |
import tensorflow as tf, tf_keras | |
from official.core import exp_factory | |
from official.vision import registry_imports # pylint: disable=unused-import | |
from official.vision.serving import image_classification | |
class ImageClassificationExportTest(tf.test.TestCase, parameterized.TestCase): | |
def _get_classification_module(self, input_type): | |
params = exp_factory.get_exp_config('resnet_imagenet') | |
params.task.model.backbone.resnet.model_id = 18 | |
classification_module = image_classification.ClassificationModule( | |
params, | |
batch_size=1, | |
input_image_size=[224, 224], | |
input_type=input_type) | |
return classification_module | |
def _export_from_module(self, module, input_type, save_directory): | |
signatures = module.get_inference_signatures( | |
{input_type: 'serving_default'}) | |
tf.saved_model.save(module, | |
save_directory, | |
signatures=signatures) | |
def _get_dummy_input(self, input_type): | |
"""Get dummy input for the given input type.""" | |
if input_type == 'image_tensor': | |
return tf.zeros((1, 224, 224, 3), dtype=np.uint8) | |
elif input_type == 'image_bytes': | |
image = Image.fromarray(np.zeros((224, 224, 3), dtype=np.uint8)) | |
byte_io = io.BytesIO() | |
image.save(byte_io, 'PNG') | |
return [byte_io.getvalue()] | |
elif input_type == 'tf_example': | |
image_tensor = tf.zeros((224, 224, 3), dtype=tf.uint8) | |
encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).numpy() | |
example = tf.train.Example( | |
features=tf.train.Features( | |
feature={ | |
'image/encoded': | |
tf.train.Feature( | |
bytes_list=tf.train.BytesList(value=[encoded_jpeg])), | |
})).SerializeToString() | |
return [example] | |
elif input_type == 'tflite': | |
return tf.zeros((1, 224, 224, 3), dtype=np.float32) | |
def test_export(self, input_type='image_tensor'): | |
tmp_dir = self.get_temp_dir() | |
module = self._get_classification_module(input_type) | |
# Test that the model restores any attrs that are trackable objects | |
# (eg: tables, resource variables, keras models/layers, tf.hub modules). | |
module.model.test_trackable = tf_keras.layers.InputLayer(input_shape=(4,)) | |
self._export_from_module(module, input_type, tmp_dir) | |
self.assertTrue(os.path.exists(os.path.join(tmp_dir, 'saved_model.pb'))) | |
self.assertTrue(os.path.exists( | |
os.path.join(tmp_dir, 'variables', 'variables.index'))) | |
self.assertTrue(os.path.exists( | |
os.path.join(tmp_dir, 'variables', 'variables.data-00000-of-00001'))) | |
imported = tf.saved_model.load(tmp_dir) | |
classification_fn = imported.signatures['serving_default'] | |
images = self._get_dummy_input(input_type) | |
if input_type != 'tflite': | |
processed_images = tf.nest.map_structure( | |
tf.stop_gradient, | |
tf.map_fn( | |
module._build_inputs, | |
elems=tf.zeros((1, 224, 224, 3), dtype=tf.uint8), | |
fn_output_signature=tf.TensorSpec( | |
shape=[224, 224, 3], dtype=tf.float32))) | |
else: | |
processed_images = images | |
expected_logits = module.model(processed_images, training=False) | |
expected_prob = tf.nn.softmax(expected_logits) | |
out = classification_fn(tf.constant(images)) | |
# The imported model should contain any trackable attrs that the original | |
# model had. | |
self.assertTrue(hasattr(imported.model, 'test_trackable')) | |
self.assertAllClose(out['logits'].numpy(), expected_logits.numpy()) | |
self.assertAllClose(out['probs'].numpy(), expected_prob.numpy()) | |
if __name__ == '__main__': | |
tf.test.main() | |