Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# import io | |
import os | |
import random | |
from absl.testing import parameterized | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from official.core import exp_factory | |
from official.vision import registry_imports # pylint: disable=unused-import | |
from official.vision.dataloaders import tfexample_utils | |
from official.vision.serving import video_classification | |
class VideoClassificationTest(tf.test.TestCase, parameterized.TestCase): | |
def _get_classification_module(self): | |
params = exp_factory.get_exp_config('video_classification_ucf101') | |
params.task.train_data.feature_shape = (8, 64, 64, 3) | |
params.task.validation_data.feature_shape = (8, 64, 64, 3) | |
params.task.model.backbone.resnet_3d.model_id = 50 | |
classification_module = video_classification.VideoClassificationModule( | |
params, batch_size=1, input_image_size=[8, 64, 64]) | |
return classification_module | |
def _export_from_module(self, module, input_type, save_directory): | |
signatures = module.get_inference_signatures( | |
{input_type: 'serving_default'}) | |
tf.saved_model.save(module, save_directory, signatures=signatures) | |
def _get_dummy_input(self, input_type, module=None): | |
"""Get dummy input for the given input type.""" | |
if input_type == 'image_tensor': | |
images = np.random.randint( | |
low=0, high=255, size=(1, 8, 64, 64, 3), dtype=np.uint8) | |
# images = np.zeros((1, 8, 64, 64, 3), dtype=np.uint8) | |
return images, images | |
elif input_type == 'tf_example': | |
example = tfexample_utils.make_video_test_example( | |
image_shape=(64, 64, 3), | |
audio_shape=(20, 128), | |
label=random.randint(0, 100)).SerializeToString() | |
images = tf.nest.map_structure( | |
tf.stop_gradient, | |
tf.map_fn( | |
module._decode_tf_example, | |
elems=tf.constant([example]), | |
fn_output_signature={ | |
video_classification.video_input.IMAGE_KEY: tf.string, | |
})) | |
images = images[video_classification.video_input.IMAGE_KEY] | |
return [example], images | |
else: | |
raise ValueError(f'{input_type}') | |
def test_export(self, input_type): | |
tmp_dir = self.get_temp_dir() | |
module = self._get_classification_module() | |
self._export_from_module(module, input_type, tmp_dir) | |
self.assertTrue(os.path.exists(os.path.join(tmp_dir, 'saved_model.pb'))) | |
self.assertTrue( | |
os.path.exists(os.path.join(tmp_dir, 'variables', 'variables.index'))) | |
self.assertTrue( | |
os.path.exists( | |
os.path.join(tmp_dir, 'variables', | |
'variables.data-00000-of-00001'))) | |
imported = tf.saved_model.load(tmp_dir) | |
classification_fn = imported.signatures['serving_default'] | |
images, images_tensor = self._get_dummy_input(input_type, module) | |
processed_images = tf.nest.map_structure( | |
tf.stop_gradient, | |
tf.map_fn( | |
module._preprocess_image, | |
elems=images_tensor, | |
fn_output_signature={ | |
'image': tf.float32, | |
})) | |
expected_logits = module.model(processed_images, training=False) | |
expected_prob = tf.nn.softmax(expected_logits) | |
out = classification_fn(tf.constant(images)) | |
# The imported model should contain any trackable attrs that the original | |
# model had. | |
self.assertAllClose(out['logits'].numpy(), expected_logits.numpy()) | |
self.assertAllClose(out['probs'].numpy(), expected_prob.numpy()) | |
if __name__ == '__main__': | |
tf.test.main() | |