Spaces:
Runtime error
Runtime error
# Copyright 2023 The Orbit Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for orbit.standard_runner.""" | |
from absl.testing import parameterized | |
from orbit import standard_runner | |
from orbit import utils | |
import tensorflow as tf, tf_keras | |
def dataset_fn(input_context=None): | |
del input_context | |
def dummy_data(_): | |
return tf.zeros((1, 1), dtype=tf.float32) | |
dataset = tf.data.Dataset.range(1) | |
dataset = dataset.repeat() | |
dataset = dataset.map( | |
dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE) | |
return dataset | |
class TestTrainer(standard_runner.StandardTrainer): | |
"""A StandardTrainer subclass for tests.""" | |
def __init__(self, options=None): | |
self.strategy = tf.distribute.get_strategy() | |
self.global_step = utils.create_global_step() | |
dataset = self.strategy.distribute_datasets_from_function(dataset_fn) | |
super().__init__(train_dataset=dataset, options=options) | |
def train_loop_begin(self): | |
self.global_step.assign(0) | |
def train_step(self, iterator): | |
def replica_step(_): | |
self.global_step.assign_add(1) | |
self.strategy.run(replica_step, args=(next(iterator),)) | |
def train_loop_end(self): | |
return self.global_step.numpy() | |
class TestEvaluator(standard_runner.StandardEvaluator): | |
"""A StandardEvaluator subclass for tests.""" | |
def __init__(self, options=None): | |
self.strategy = tf.distribute.get_strategy() | |
self.global_step = utils.create_global_step() | |
dataset = self.strategy.distribute_datasets_from_function(dataset_fn) | |
super().__init__(eval_dataset=dataset, options=options) | |
def eval_begin(self): | |
self.global_step.assign(0) | |
def eval_step(self, iterator): | |
def replica_step(_): | |
self.global_step.assign_add(1) | |
self.strategy.run(replica_step, args=(next(iterator),)) | |
def eval_end(self): | |
return self.global_step.numpy() | |
class TestEvaluatorWithOutputsAggregation(standard_runner.StandardEvaluator): | |
"""A StandardEvaluator subclass for tests.""" | |
def __init__(self, options=None): | |
self.strategy = tf.distribute.get_strategy() | |
dataset = self.strategy.distribute_datasets_from_function( | |
lambda _: tf.data.Dataset.range(10)) | |
super().__init__(eval_dataset=dataset, options=options) | |
def eval_begin(self): | |
return {"logits": tf.constant((0.0,))} | |
def eval_reduce(self, state, step_outputs): | |
state["logits"] = tf.concat([state["logits"], step_outputs], 0) | |
return state | |
def eval_step(self, iterator): | |
def replica_step(x): | |
x = tf.cast(x, tf.float32) | |
return tf.reduce_sum(x) | |
return self.strategy.experimental_local_results( | |
self.strategy.run(replica_step, args=(next(iterator),))) | |
def eval_end(self, outputs): | |
return tf.reduce_sum(outputs["logits"]) | |
class StandardRunnerTest(parameterized.TestCase): | |
def test_default_trainer(self): | |
trainer = TestTrainer() | |
self.assertEqual(trainer.train(tf.constant(10)), 10) | |
def test_trainer_with_tpu_summary_optimization(self): | |
options = standard_runner.StandardTrainerOptions( | |
use_tpu_summary_optimization=True) | |
trainer = TestTrainer(options) | |
self.assertEqual(trainer.train(tf.constant(10)), 10) | |
def test_default_evaluator(self, use_tf_while_loop): | |
options = standard_runner.StandardEvaluatorOptions( | |
use_tf_while_loop=use_tf_while_loop) | |
evaluator = TestEvaluator(options) | |
self.assertEqual(evaluator.evaluate(tf.constant(10)), 10) | |
def test_evaluator_with_outputs_aggregation(self, use_tf_while_loop): | |
options = standard_runner.StandardEvaluatorOptions( | |
use_tf_while_loop=use_tf_while_loop) | |
evaluator = TestEvaluatorWithOutputsAggregation(options) | |
self.assertEqual(evaluator.evaluate(tf.constant(10)), 45) | |
def test_evaluator_with_repeat_dataset(self, recreate_iterator_for_each_eval, | |
sum_for_1st_time, sum_for_2nd_time): | |
options = standard_runner.StandardEvaluatorOptions( | |
recreate_iterator_for_each_eval=recreate_iterator_for_each_eval) | |
evaluator = TestEvaluatorWithOutputsAggregation(options) | |
self.assertEqual(evaluator.evaluate(tf.constant(5)), sum_for_1st_time) | |
self.assertEqual(evaluator.evaluate(tf.constant(5)), sum_for_2nd_time) | |
if __name__ == "__main__": | |
tf.test.main() | |