Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Experimental MultiTask base class for multi-task training/evaluation.""" | |
import abc | |
from typing import Dict, List, Optional, Text, Union | |
import tensorflow as tf, tf_keras | |
from official.core import base_task | |
from official.core import config_definitions | |
from official.core import task_factory | |
from official.modeling import optimization | |
from official.modeling.multitask import base_model | |
from official.modeling.multitask import configs | |
from official.modeling.privacy import configs as dp_configs | |
OptimizationConfig = optimization.OptimizationConfig | |
RuntimeConfig = config_definitions.RuntimeConfig | |
DifferentialPrivacyConfig = dp_configs.DifferentialPrivacyConfig | |
class MultiTask(tf.Module, metaclass=abc.ABCMeta): | |
"""A multi-task class to manage multiple tasks.""" | |
def __init__(self, | |
tasks: Union[Dict[Text, base_task.Task], List[base_task.Task]], | |
task_weights: Optional[Dict[str, Union[float, int]]] = None, | |
task_eval_steps: Optional[Dict[str, int]] = None, | |
name: Optional[str] = None): | |
"""MultiTask initialization. | |
Args: | |
tasks: a list or a flat dict of Task. | |
task_weights: a dict of (task, task weight), task weight can be applied | |
directly during loss summation in a joint backward step, or it can be | |
used to sample task among interleaved backward step. | |
task_eval_steps: a dict of (task, eval steps). | |
name: the instance name of a MultiTask object. | |
""" | |
super().__init__(name=name) | |
if isinstance(tasks, list): | |
self._tasks = {} | |
for task in tasks: | |
if task.name in self._tasks: | |
raise ValueError("Duplicated tasks found, task.name is %s" % | |
task.name) | |
self._tasks[task.name] = task | |
elif isinstance(tasks, dict): | |
self._tasks = tasks | |
else: | |
raise ValueError("The tasks argument has an invalid type: %s" % | |
type(tasks)) | |
self.task_eval_steps = task_eval_steps or {} | |
self._task_weights = task_weights or {} | |
self._task_weights = dict([ | |
(name, self._task_weights.get(name, 1.0)) for name in self.tasks | |
]) | |
def from_config(cls, config: configs.MultiTaskConfig, logging_dir=None): | |
tasks = {} | |
task_eval_steps = {} | |
task_weights = {} | |
for task_routine in config.task_routines: | |
task_name = task_routine.task_name or task_routine.task_config.name | |
tasks[task_name] = task_factory.get_task( | |
task_routine.task_config, logging_dir=logging_dir, name=task_name) | |
task_eval_steps[task_name] = task_routine.eval_steps | |
task_weights[task_name] = task_routine.task_weight | |
return cls( | |
tasks, task_eval_steps=task_eval_steps, task_weights=task_weights) | |
def tasks(self): | |
return self._tasks | |
def task_weight(self, task_name): | |
return self._task_weights[task_name] | |
def task_weights(self): | |
return self._task_weights | |
def create_optimizer(cls, | |
optimizer_config: OptimizationConfig, | |
runtime_config: Optional[RuntimeConfig] = None, | |
dp_config: Optional[DifferentialPrivacyConfig] = None): | |
return base_task.Task.create_optimizer( | |
optimizer_config=optimizer_config, runtime_config=runtime_config, | |
dp_config=dp_config) | |
def joint_train_step(self, task_inputs, | |
multi_task_model: base_model.MultiTaskBaseModel, | |
optimizer: tf_keras.optimizers.Optimizer, task_metrics, | |
**kwargs): | |
"""The joint train step. | |
Args: | |
task_inputs: a dictionary of task names and per-task features. | |
multi_task_model: a MultiTaskBaseModel instance. | |
optimizer: a tf.optimizers.Optimizer. | |
task_metrics: a dictionary of task names and per-task metrics. | |
**kwargs: other arguments to pass through. | |
Returns: | |
A dictionary of losses, inculding per-task losses and their weighted sum. | |
""" | |
losses = {} | |
with tf.GradientTape() as tape: | |
total_loss = 0.0 | |
for name, model in multi_task_model.sub_tasks.items(): | |
inputs = task_inputs[name] | |
if isinstance(inputs, tuple) and len(inputs) == 2: | |
features, labels = inputs | |
elif isinstance(inputs, dict): | |
features, labels = inputs, inputs | |
else: | |
raise ValueError("The iterator output is neither a tuple nor a " | |
"dictionary. It is not implemented to support " | |
"such outputs.") | |
outputs = model(features, training=True) | |
task_loss = self.tasks[name].build_losses(labels, outputs) | |
task_weight = self.task_weight(name) | |
total_loss += task_weight * task_loss | |
losses[name] = task_loss | |
self.tasks[name].process_metrics(task_metrics[name], labels, outputs, | |
**kwargs) | |
# Scales loss as the default gradients allreduce performs sum inside | |
# the optimizer. | |
scaled_loss = total_loss / tf.distribute.get_strategy( | |
).num_replicas_in_sync | |
tvars = multi_task_model.trainable_variables | |
grads = tape.gradient(scaled_loss, tvars) | |
optimizer.apply_gradients(list(zip(grads, tvars))) | |
losses["total_loss"] = total_loss | |
return losses | |