deanna-emery's picture
updates
93528c6
raw
history blame
2.32 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TFDS detection decoders."""
import tensorflow as tf, tf_keras
from official.vision.dataloaders import decoder
class MSCOCODecoder(decoder.Decoder):
"""A tf.Example decoder for tfds coco datasets."""
def decode(self, serialized_example):
"""Decode the serialized example.
Args:
serialized_example: a dictionary example produced by tfds.
Returns:
decoded_tensors: a dictionary of tensors with the following fields:
- source_id: a string scalar tensor.
- image: a uint8 tensor of shape [None, None, 3].
- height: an integer scalar tensor.
- width: an integer scalar tensor.
- groundtruth_classes: a int64 tensor of shape [None].
- groundtruth_is_crowd: a bool tensor of shape [None].
- groundtruth_area: a float32 tensor of shape [None].
- groundtruth_boxes: a float32 tensor of shape [None, 4].
"""
decoded_tensors = {
'source_id': tf.strings.as_string(serialized_example['image/id']),
'image': serialized_example['image'],
'height': tf.cast(tf.shape(serialized_example['image'])[0], tf.int64),
'width': tf.cast(tf.shape(serialized_example['image'])[1], tf.int64),
'groundtruth_classes': serialized_example['objects']['label'],
'groundtruth_is_crowd': serialized_example['objects']['is_crowd'],
'groundtruth_area': tf.cast(
serialized_example['objects']['area'], tf.float32),
'groundtruth_boxes': serialized_example['objects']['bbox'],
}
return decoded_tensors
TFDS_ID_TO_DECODER_MAP = {
'coco/2017': MSCOCODecoder,
'coco/2014': MSCOCODecoder,
'coco': MSCOCODecoder,
'scenic:objects365': MSCOCODecoder,
}