Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for tfds factory functions.""" | |
from absl.testing import parameterized | |
import tensorflow as tf, tf_keras | |
from official.vision.dataloaders import decoder as base_decoder | |
from official.vision.dataloaders import tfds_factory | |
class TFDSFactoryTest(tf.test.TestCase, parameterized.TestCase): | |
def _create_test_example(self): | |
serialized_example = { | |
'image': tf.ones(shape=(100, 100, 3), dtype=tf.uint8), | |
'label': 1, | |
'image/id': 0, | |
'objects': { | |
'label': 1, | |
'is_crowd': 0, | |
'area': 0.5, | |
'bbox': [0.1, 0.2, 0.3, 0.4] | |
}, | |
'segmentation_label': tf.ones((100, 100, 1), dtype=tf.uint8), | |
'image_left': tf.ones(shape=(100, 100, 3), dtype=tf.uint8) | |
} | |
return serialized_example | |
def test_classification_decoder(self, tfds_name): | |
decoder = tfds_factory.get_classification_decoder(tfds_name) | |
self.assertIsInstance(decoder, base_decoder.Decoder) | |
decoded_tensor = decoder.decode(self._create_test_example()) | |
self.assertLen(decoded_tensor, 2) | |
self.assertIn('image/encoded', decoded_tensor) | |
self.assertIn('image/class/label', decoded_tensor) | |
def test_doesnt_exit_classification_decoder(self, tfds_name): | |
with self.assertRaises(ValueError): | |
_ = tfds_factory.get_classification_decoder(tfds_name) | |
def test_detection_decoder(self, tfds_name): | |
decoder = tfds_factory.get_detection_decoder(tfds_name) | |
self.assertIsInstance(decoder, base_decoder.Decoder) | |
decoded_tensor = decoder.decode(self._create_test_example()) | |
self.assertLen(decoded_tensor, 8) | |
self.assertIn('image', decoded_tensor) | |
self.assertIn('source_id', decoded_tensor) | |
self.assertIn('height', decoded_tensor) | |
self.assertIn('width', decoded_tensor) | |
self.assertIn('groundtruth_classes', decoded_tensor) | |
self.assertIn('groundtruth_is_crowd', decoded_tensor) | |
self.assertIn('groundtruth_area', decoded_tensor) | |
self.assertIn('groundtruth_boxes', decoded_tensor) | |
def test_doesnt_exit_detection_decoder(self, tfds_name): | |
with self.assertRaises(ValueError): | |
_ = tfds_factory.get_detection_decoder(tfds_name) | |
def test_segmentation_decoder(self, tfds_name): | |
decoder = tfds_factory.get_segmentation_decoder(tfds_name) | |
self.assertIsInstance(decoder, base_decoder.Decoder) | |
decoded_tensor = decoder.decode(self._create_test_example()) | |
self.assertLen(decoded_tensor, 4) | |
self.assertIn('image/encoded', decoded_tensor) | |
self.assertIn('image/segmentation/class/encoded', decoded_tensor) | |
self.assertIn('image/height', decoded_tensor) | |
self.assertIn('image/width', decoded_tensor) | |
def test_doesnt_exit_segmentation_decoder(self, tfds_name): | |
with self.assertRaises(ValueError): | |
_ = tfds_factory.get_segmentation_decoder(tfds_name) | |
if __name__ == '__main__': | |
tf.test.main() | |