deanna-emery's picture
updates
93528c6
raw
history blame
27.4 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of the Panoptic Quality metric.
Panoptic Quality is an instance-based metric for evaluating the task of
image parsing, aka panoptic segmentation.
Please see the paper for details:
"Panoptic Segmentation", Alexander Kirillov, Kaiming He, Ross Girshick,
Carsten Rother and Piotr Dollar. arXiv:1801.00868, 2018.
Note that this metric class is branched from
https://github.com/tensorflow/models/blob/master/research/deeplab/evaluation/panoptic_quality.py
"""
import collections
from typing import Any, Dict, Optional, Tuple, Union
import numpy as np
import tensorflow as tf, tf_keras
from official.vision.ops import box_ops
_EPSILON = 1e-10
def realdiv_maybe_zero(x, y):
"""Element-wise x / y where y may contain zeros, for those returns 0 too."""
return np.where(
np.less(np.abs(y), _EPSILON), np.zeros_like(x), np.divide(x, y))
def _ids_to_counts(id_array):
"""Given a numpy array, a mapping from each unique entry to its count."""
ids, counts = np.unique(id_array, return_counts=True)
return dict(zip(ids, counts))
class PanopticQuality:
"""Metric class for Panoptic Quality.
"Panoptic Segmentation" by Alexander Kirillov, Kaiming He, Ross Girshick,
Carsten Rother, Piotr Dollar.
https://arxiv.org/abs/1801.00868
"""
def __init__(self, num_categories, ignored_label, max_instances_per_category,
offset):
"""Initialization for PanopticQualityMetric.
Args:
num_categories: The number of segmentation categories (or "classes" in the
dataset).
ignored_label: A category id that is ignored in evaluation, e.g. the void
label as defined in COCO panoptic segmentation dataset.
max_instances_per_category: The maximum number of instances for each
category. Used in ensuring unique instance labels.
offset: The maximum number of unique labels. This is used, by multiplying
the ground-truth labels, to generate unique ids for individual regions
of overlap between ground-truth and predicted segments.
"""
self.num_categories = num_categories
self.ignored_label = ignored_label
self.max_instances_per_category = max_instances_per_category
self.offset = offset
self.reset()
def _naively_combine_labels(self, category_mask, instance_mask):
"""Naively creates a combined label array from categories and instances."""
return (category_mask.astype(np.uint32) * self.max_instances_per_category +
instance_mask.astype(np.uint32))
def compare_and_accumulate(self, groundtruths, predictions):
"""Compares predictions with ground-truths, and accumulates the metrics.
It is not assumed that instance ids are unique across different categories.
See for example combine_semantic_and_instance_predictions.py in official
PanopticAPI evaluation code for issues to consider when fusing category
and instance labels.
Instances ids of the ignored category have the meaning that id 0 is "void"
and remaining ones are crowd instances.
Args:
groundtruths: A dictionary contains ground-truth labels. It should contain
the following fields.
- category_mask: A 2D numpy uint16 array of ground-truth per-pixel
category labels.
- instance_mask: A 2D numpy uint16 array of ground-truth per-pixel
instance labels.
predictions: A dictionary contains the model outputs. It should contain
the following fields.
- category_array: A 2D numpy uint16 array of predicted per-pixel
category labels.
- instance_array: A 2D numpy uint16 array of predicted instance labels.
"""
groundtruth_category_mask = groundtruths['category_mask']
groundtruth_instance_mask = groundtruths['instance_mask']
predicted_category_mask = predictions['category_mask']
predicted_instance_mask = predictions['instance_mask']
# First, combine the category and instance labels so that every unique
# value for (category, instance) is assigned a unique integer label.
pred_segment_id = self._naively_combine_labels(predicted_category_mask,
predicted_instance_mask)
gt_segment_id = self._naively_combine_labels(groundtruth_category_mask,
groundtruth_instance_mask)
# Pre-calculate areas for all ground-truth and predicted segments.
gt_segment_areas = _ids_to_counts(gt_segment_id)
pred_segment_areas = _ids_to_counts(pred_segment_id)
# We assume there is only one void segment and it has instance id = 0.
void_segment_id = self.ignored_label * self.max_instances_per_category
# There may be other ignored ground-truth segments with instance id > 0,
# find those ids using the unique segment ids extracted with the area
# computation above.
ignored_segment_ids = {
gt_segment_id for gt_segment_id in gt_segment_areas
if (gt_segment_id //
self.max_instances_per_category) == self.ignored_label
}
# Next, combine the ground-truth and predicted labels. Divide up the pixels
# based on which ground-truth segment and predicted segment they belong to,
# this will assign a different 32-bit integer label to each choice of
# (ground-truth segment, predicted segment), encoded as
# gt_segment_id * offset + pred_segment_id.
intersection_id_array = (
gt_segment_id.astype(np.uint64) * self.offset +
pred_segment_id.astype(np.uint64))
# For every combination of (ground-truth segment, predicted segment) with a
# non-empty intersection, this counts the number of pixels in that
# intersection.
intersection_areas = _ids_to_counts(intersection_id_array)
# Helper function that computes the area of the overlap between a predicted
# segment and the ground-truth void/ignored segment.
def prediction_void_overlap(pred_segment_id):
void_intersection_id = void_segment_id * self.offset + pred_segment_id
return intersection_areas.get(void_intersection_id, 0)
# Compute overall ignored overlap.
def prediction_ignored_overlap(pred_segment_id):
total_ignored_overlap = 0
for ignored_segment_id in ignored_segment_ids:
intersection_id = ignored_segment_id * self.offset + pred_segment_id
total_ignored_overlap += intersection_areas.get(intersection_id, 0)
return total_ignored_overlap
# Sets that are populated with segments which ground-truth/predicted
# segments have been matched with overlapping predicted/ground-truth
# segments respectively.
gt_matched = set()
pred_matched = set()
# Calculate IoU per pair of intersecting segments of the same category.
for intersection_id, intersection_area in intersection_areas.items():
gt_segment_id = int(intersection_id // self.offset)
pred_segment_id = int(intersection_id % self.offset)
gt_category = int(gt_segment_id // self.max_instances_per_category)
pred_category = int(pred_segment_id // self.max_instances_per_category)
if gt_category != pred_category:
continue
# Union between the ground-truth and predicted segments being compared
# does not include the portion of the predicted segment that consists of
# ground-truth "void" pixels.
union = (
gt_segment_areas[gt_segment_id] +
pred_segment_areas[pred_segment_id] - intersection_area -
prediction_void_overlap(pred_segment_id))
iou = intersection_area / union
if iou > 0.5:
self.tp_per_class[gt_category] += 1
self.iou_per_class[gt_category] += iou
gt_matched.add(gt_segment_id)
pred_matched.add(pred_segment_id)
# Count false negatives for each category.
for gt_segment_id in gt_segment_areas:
if gt_segment_id in gt_matched:
continue
category = gt_segment_id // self.max_instances_per_category
# Failing to detect a void segment is not a false negative.
if category == self.ignored_label:
continue
self.fn_per_class[category] += 1
# Count false positives for each category.
for pred_segment_id in pred_segment_areas:
if pred_segment_id in pred_matched:
continue
# A false positive is not penalized if is mostly ignored in the
# ground-truth.
if (prediction_ignored_overlap(pred_segment_id) /
pred_segment_areas[pred_segment_id]) > 0.5:
continue
category = pred_segment_id // self.max_instances_per_category
self.fp_per_class[category] += 1
def _valid_categories(self):
"""Categories with a "valid" value for the metric, have > 0 instances.
We will ignore the `ignore_label` class and other classes which have
`tp + fn + fp = 0`.
Returns:
Boolean array of shape `[num_categories]`.
"""
valid_categories = np.not_equal(
self.tp_per_class + self.fn_per_class + self.fp_per_class, 0)
if self.ignored_label >= 0 and self.ignored_label < self.num_categories:
valid_categories[self.ignored_label] = False
return valid_categories
def result_per_category(self):
"""For supported metrics, return individual per-category metric values.
Returns:
A dictionary contains all per-class metrics, each metrics is a numpy array
of shape `[self.num_categories]`, where index `i` is the metrics value
over only that category.
"""
sq_per_class = realdiv_maybe_zero(self.iou_per_class, self.tp_per_class)
rq_per_class = realdiv_maybe_zero(
self.tp_per_class,
self.tp_per_class + 0.5 * self.fn_per_class + 0.5 * self.fp_per_class)
return {
'sq_per_class': sq_per_class,
'rq_per_class': rq_per_class,
'pq_per_class': np.multiply(sq_per_class, rq_per_class)
}
def result(self, is_thing=None):
"""Computes and returns the detailed metric results over all comparisons.
Args:
is_thing: A boolean array of length `num_categories`. The entry
`is_thing[category_id]` is True iff that category is a "thing" category
instead of "stuff."
Returns:
A dictionary with a breakdown of metrics and/or metric factors by things,
stuff, and all categories.
"""
results = self.result_per_category()
valid_categories = self._valid_categories()
# If known, break down which categories are valid _and_ things/stuff.
category_sets = collections.OrderedDict()
category_sets['All'] = valid_categories
if is_thing is not None:
category_sets['Things'] = np.logical_and(valid_categories, is_thing)
category_sets['Stuff'] = np.logical_and(valid_categories,
np.logical_not(is_thing))
for category_set_name, in_category_set in category_sets.items():
if np.any(in_category_set):
results.update({
f'{category_set_name}_pq':
np.mean(results['pq_per_class'][in_category_set]),
f'{category_set_name}_sq':
np.mean(results['sq_per_class'][in_category_set]),
f'{category_set_name}_rq':
np.mean(results['rq_per_class'][in_category_set]),
# The number of categories in this subset.
f'{category_set_name}_num_categories':
np.sum(in_category_set.astype(np.int32)),
})
else:
results.update({
f'{category_set_name}_pq': 0.,
f'{category_set_name}_sq': 0.,
f'{category_set_name}_rq': 0.,
f'{category_set_name}_num_categories': 0
})
return results
def reset(self):
"""Resets the accumulation to the metric class's state at initialization."""
self.iou_per_class = np.zeros(self.num_categories, dtype=np.float64)
self.tp_per_class = np.zeros(self.num_categories, dtype=np.float64)
self.fn_per_class = np.zeros(self.num_categories, dtype=np.float64)
self.fp_per_class = np.zeros(self.num_categories, dtype=np.float64)
def _get_instance_class_ids(
category_mask: tf.Tensor,
instance_mask: tf.Tensor,
max_num_instances: int,
ignored_label: int,
) -> tf.Tensor:
"""Get the class id of each instance (index starts from 1)."""
# (batch_size, height, width)
instance_mask = tf.where(
(instance_mask == 0) | (category_mask == ignored_label), -1, instance_mask
)
# (batch_size, height, width, max_num_instances + 1)
instance_binary_mask = tf.one_hot(
instance_mask, max_num_instances + 1, dtype=tf.int32
)
# (batch_size, max_num_instances + 1)
result = tf.reduce_max(
instance_binary_mask * category_mask[..., tf.newaxis], axis=[1, 2]
)
# If not an instance, sets the class id to -1.
return tf.where(result == 0, -1, result)
class PanopticQualityV2(tf_keras.metrics.Metric):
"""Panoptic quality metrics with vectorized implementation.
This implementation is supported on TPU.
"Panoptic Segmentation" by Alexander Kirillov, Kaiming He, Ross Girshick,
Carsten Rother, Piotr Dollar.
https://arxiv.org/abs/1801.00868
"""
def __init__(
self,
num_categories: int,
is_thing: Optional[Tuple[bool, ...]] = None,
max_num_instances: int = 255,
ignored_label: int = 255,
rescale_predictions: bool = False,
name: Optional[str] = None,
dtype: Optional[Union[str, tf.dtypes.DType]] = tf.float32,
):
"""Initialization for PanopticQualityV2.
Args:
num_categories: the number of categories.
is_thing: a boolean array of length `num_categories`. The entry
`is_thing[category_id]` is True iff that category is a "thing" category
instead of "stuff". Default to `None`, and it means categories are not
classified into these two categories.
max_num_instances: the maximum number of instances in an image.
ignored_label: a category id that is ignored in evaluation, e.g. the void
label as defined in COCO panoptic segmentation dataset.
rescale_predictions: whether to scale back prediction to original image
sizes. If True, the image_info of the groundtruth is used to rescale
predictions.
name: string name of the metric instance.
dtype: data type of the metric result.
"""
super().__init__(name=name, dtype=dtype)
self._num_categories = num_categories
if is_thing is not None:
self._is_thing = is_thing
else:
self._is_thing = [True] * self._num_categories
self._max_num_instances = max_num_instances
self._ignored_label = ignored_label
self._rescale_predictions = rescale_predictions
# Variables
self.tp_count = self.add_weight(
'tp_count',
shape=[self._num_categories],
initializer='zeros',
dtype=tf.float32,
)
self.fp_count = self.add_weight(
'fp_count',
shape=[self._num_categories],
initializer='zeros',
dtype=tf.float32,
)
self.fn_count = self.add_weight(
'fn_count',
shape=[self._num_categories],
initializer='zeros',
dtype=tf.float32,
)
self.tp_iou_sum = self.add_weight(
'tp_iou_sum',
shape=[self._num_categories],
initializer='zeros',
dtype=tf.float32,
)
def get_config(self) -> Dict[str, Any]:
"""Returns the serializable config of the metric."""
return {
'num_categories': self._num_categories,
'is_thing': self._is_thing,
'max_num_instances': self._max_num_instances,
'ignored_label': self._ignored_label,
'rescale_predictions': self._rescale_predictions,
'name': self.name,
'dtype': self.dtype,
}
def reset_state(self):
"""Resets all of the metric state variables."""
self.tp_count.assign(tf.zeros_like(self.tp_count))
self.fp_count.assign(tf.zeros_like(self.fp_count))
self.fn_count.assign(tf.zeros_like(self.fn_count))
self.tp_iou_sum.assign(tf.zeros_like(self.tp_iou_sum))
def update_state(
self, y_true: Dict[str, tf.Tensor], y_pred: Dict[str, tf.Tensor]
):
category_mask = tf.convert_to_tensor(y_pred['category_mask'], tf.int32)
instance_mask = tf.convert_to_tensor(y_pred['instance_mask'], tf.int32)
gt_category_mask = tf.convert_to_tensor(y_true['category_mask'], tf.int32)
gt_instance_mask = tf.convert_to_tensor(y_true['instance_mask'], tf.int32)
if self._rescale_predictions:
_, height, width = gt_category_mask.get_shape().as_list()
# Instead of cropping the masks to the original image shape (dynamic),
# here we keep the mask shape (fixed) and ignore the pixels outside the
# original image shape.
image_shape = tf.cast(y_true['image_info'][:, 0, :], tf.int32)
# (batch_size, 2)
y0_x0 = tf.broadcast_to(
tf.constant([[0, 0]], dtype=tf.int32), tf.shape(image_shape)
)
# (batch_size, 4)
image_shape_bbox = tf.concat([y0_x0, image_shape], axis=1)
# (batch_size, height, width)
image_shape_masks = box_ops.bbox2mask(
bbox=image_shape_bbox,
image_height=height,
image_width=width,
dtype=tf.bool,
)
# (batch_size, height, width)
category_mask = tf.where(
image_shape_masks, category_mask, self._ignored_label
)
instance_mask = tf.where(image_shape_masks, instance_mask, 0)
gt_category_mask = tf.where(
image_shape_masks, gt_category_mask, self._ignored_label
)
gt_instance_mask = tf.where(image_shape_masks, gt_instance_mask, 0)
self._update_thing_classes(
category_mask, instance_mask, gt_category_mask, gt_instance_mask
)
self._update_stuff_classes(category_mask, gt_category_mask)
def _update_thing_classes(
self,
category_mask: tf.Tensor,
instance_mask: tf.Tensor,
gt_category_mask: tf.Tensor,
gt_instance_mask: tf.Tensor,
):
_, height, width = category_mask.get_shape().as_list()
# (batch_size, num_detections + 1)
instance_class_ids = _get_instance_class_ids(
category_mask,
instance_mask,
self._max_num_instances,
self._ignored_label,
)
# (batch_size, num_gts + 1)
gt_instance_class_ids = _get_instance_class_ids(
gt_category_mask,
gt_instance_mask,
self._max_num_instances,
self._ignored_label,
)
# (batch_size, height, width)
valid_mask = gt_category_mask != self._ignored_label
# (batch_size, height, width, num_detections + 1)
instance_binary_masks = tf.one_hot(
tf.where(instance_mask > 0, instance_mask, -1),
self._max_num_instances + 1,
on_value=True,
off_value=False,
)
# (batch_size, height, width, num_gts + 1)
gt_instance_binary_masks = tf.one_hot(
tf.where(gt_instance_mask > 0, gt_instance_mask, -1),
self._max_num_instances + 1,
on_value=True,
off_value=False,
)
# (batch_size, height * width, num_detections + 1)
flattened_binary_masks = tf.reshape(
instance_binary_masks & valid_mask[..., tf.newaxis],
[-1, height * width, self._max_num_instances + 1],
)
# (batch_size, height * width, num_gts + 1)
flattened_gt_binary_masks = tf.reshape(
gt_instance_binary_masks & valid_mask[..., tf.newaxis],
[-1, height * width, self._max_num_instances + 1],
)
# (batch_size, num_detections + 1, height * width)
flattened_binary_masks = tf.transpose(flattened_binary_masks, [0, 2, 1])
# (batch_size, num_detections + 1, num_gts + 1)
intersection = tf.matmul(
tf.cast(flattened_binary_masks, tf.float32),
tf.cast(flattened_gt_binary_masks, tf.float32),
)
union = (
tf.math.count_nonzero(
flattened_binary_masks, axis=-1, keepdims=True, dtype=tf.float32
)
+ tf.math.count_nonzero(
flattened_gt_binary_masks, axis=-2, keepdims=True, dtype=tf.float32
)
- intersection
)
# (batch_size, num_detections + 1, num_gts + 1)
detection_to_gt_ious = tf.math.divide_no_nan(intersection, union)
detection_matches_gt = (
(detection_to_gt_ious > 0.5)
& (
instance_class_ids[:, :, tf.newaxis]
== gt_instance_class_ids[:, tf.newaxis, :]
)
& (gt_instance_class_ids[:, tf.newaxis, :] > 0)
)
# (batch_size, num_gts + 1)
is_tp = tf.reduce_any(detection_matches_gt, axis=1)
# (batch_size, num_gts + 1)
tp_iou = tf.reduce_max(
tf.where(detection_matches_gt, detection_to_gt_ious, 0), axis=1
)
# (batch_size, num_detections + 1)
is_fp = tf.reduce_any(instance_binary_masks, axis=[1, 2]) & ~tf.reduce_any(
detection_matches_gt, axis=2
)
# (batch_size, height, width, num_detections + 1)
fp_binary_mask = is_fp[:, tf.newaxis, tf.newaxis, :] & instance_binary_masks
# (batch_size, num_detections + 1)
fp_area = tf.math.count_nonzero(
fp_binary_mask, axis=[1, 2], dtype=tf.float32
)
# (batch_size, num_detections + 1)
fp_crowd_or_ignored_area = tf.math.count_nonzero(
fp_binary_mask
& (
(
# An instance detection matches a crowd ground truth instance if
# the instance class of the detection matches the class of the
# ground truth and the instance id of the ground truth is 0 (the
# instance is crowd).
(instance_mask > 0)
& (category_mask > 0)
& (gt_category_mask == category_mask)
& (gt_instance_mask == 0)
)
| (gt_category_mask == self._ignored_label)
)[..., tf.newaxis],
axis=[1, 2],
dtype=tf.float32,
)
# Don't count the detection as false positive if over 50% pixels of the
# instance detection are crowd of the matching class or ignored pixels in
# ground truth.
# (batch_size, num_detections + 1)
is_fp &= tf.math.divide_no_nan(fp_crowd_or_ignored_area, fp_area) <= 0.5
# (batch_size, num_detections + 1, num_categories)
detection_by_class = tf.one_hot(
instance_class_ids, self._num_categories, on_value=True, off_value=False
)
# (batch_size, num_gts + 1, num_categories)
gt_by_class = tf.one_hot(
gt_instance_class_ids,
self._num_categories,
on_value=True,
off_value=False,
)
# (num_categories,)
gt_count = tf.math.count_nonzero(gt_by_class, axis=[0, 1], dtype=tf.float32)
tp_count = tf.math.count_nonzero(
is_tp[..., tf.newaxis] & gt_by_class, axis=[0, 1], dtype=tf.float32
)
fn_count = gt_count - tp_count
fp_count = tf.math.count_nonzero(
is_fp[..., tf.newaxis] & detection_by_class,
axis=[0, 1],
dtype=tf.float32,
)
tp_iou_sum = tf.reduce_sum(
tf.cast(gt_by_class, tf.float32) * tp_iou[..., tf.newaxis], axis=[0, 1]
)
self.tp_count.assign_add(tp_count)
self.fn_count.assign_add(fn_count)
self.fp_count.assign_add(fp_count)
self.tp_iou_sum.assign_add(tp_iou_sum)
def _update_stuff_classes(
self, category_mask: tf.Tensor, gt_category_mask: tf.Tensor
):
# (batch_size, height, width, num_categories)
category_binary_mask = tf.one_hot(
category_mask, self._num_categories, on_value=True, off_value=False
)
gt_category_binary_mask = tf.one_hot(
gt_category_mask, self._num_categories, on_value=True, off_value=False
)
# (batch_size, height, width)
valid_mask = gt_category_mask != self._ignored_label
# (batch_size, num_categories)
intersection = tf.math.count_nonzero(
category_binary_mask
& gt_category_binary_mask
& valid_mask[..., tf.newaxis],
axis=[1, 2],
dtype=tf.float32,
)
union = tf.math.count_nonzero(
(category_binary_mask | gt_category_binary_mask)
& valid_mask[..., tf.newaxis],
axis=[1, 2],
dtype=tf.float32,
)
iou = tf.math.divide_no_nan(intersection, union)
is_thing = tf.constant(self._is_thing, dtype=tf.bool)
# (batch_size, num_categories)
is_tp = (iou > 0.5) & ~is_thing
is_fn = (
tf.reduce_any(gt_category_binary_mask, axis=[1, 2]) & ~is_thing & ~is_tp
)
is_fp = (
tf.reduce_any(category_binary_mask, axis=[1, 2]) & ~is_thing & ~is_tp
)
# (batch_size, height, width, num_categories)
fp_binary_mask = is_fp[:, tf.newaxis, tf.newaxis, :] & category_binary_mask
# (batch_size, num_categories)
fp_area = tf.math.count_nonzero(
fp_binary_mask, axis=[1, 2], dtype=tf.float32
)
fp_ignored_area = tf.math.count_nonzero(
fp_binary_mask
& (gt_category_mask == self._ignored_label)[..., tf.newaxis],
axis=[1, 2],
dtype=tf.float32,
)
# Don't count the detection as false positive if over 50% pixels of the
# stuff detection are ignored pixels in ground truth.
is_fp &= tf.math.divide_no_nan(fp_ignored_area, fp_area) <= 0.5
# (num_categories,)
tp_count = tf.math.count_nonzero(is_tp, axis=0, dtype=tf.float32)
fn_count = tf.math.count_nonzero(is_fn, axis=0, dtype=tf.float32)
fp_count = tf.math.count_nonzero(is_fp, axis=0, dtype=tf.float32)
tp_iou_sum = tf.reduce_sum(tf.cast(is_tp, tf.float32) * iou, axis=0)
self.tp_count.assign_add(tp_count)
self.fn_count.assign_add(fn_count)
self.fp_count.assign_add(fp_count)
self.tp_iou_sum.assign_add(tp_iou_sum)
def result(self) -> Dict[str, tf.Tensor]:
"""Returns the metrics values as a dict."""
# (num_categories,)
tp_fn_fp_count = self.tp_count + self.fn_count + self.fp_count
is_ignore_label = tf.one_hot(
self._ignored_label,
self._num_categories,
on_value=True,
off_value=False,
)
sq_per_class = tf.math.divide_no_nan(
self.tp_iou_sum, self.tp_count
) * tf.cast(~is_ignore_label, tf.float32)
rq_per_class = tf.math.divide_no_nan(
self.tp_count, self.tp_count + 0.5 * self.fp_count + 0.5 * self.fn_count
) * tf.cast(~is_ignore_label, tf.float32)
pq_per_class = sq_per_class * rq_per_class
is_thing = tf.constant(self._is_thing, dtype=tf.bool)
result = {
# (num_categories,)
'valid_thing_classes': (
(tp_fn_fp_count > 0) & is_thing & ~is_ignore_label
),
# (num_categories,)
'valid_stuff_classes': (
(tp_fn_fp_count > 0) & ~is_thing & ~is_ignore_label
),
# (num_categories,)
'sq_per_class': sq_per_class,
# (num_categories,)
'rq_per_class': rq_per_class,
# (num_categories,)
'pq_per_class': pq_per_class,
}
return result