Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Example experiment configuration definition.""" | |
import dataclasses | |
from typing import List | |
from official.core import config_definitions as cfg | |
from official.core import exp_factory | |
from official.modeling import hyperparams | |
from official.modeling import optimization | |
class ExampleDataConfig(cfg.DataConfig): | |
"""Input config for training. Add more fields as needed.""" | |
input_path: str = '' | |
global_batch_size: int = 0 | |
is_training: bool = True | |
dtype: str = 'float32' | |
shuffle_buffer_size: int = 10000 | |
cycle_length: int = 10 | |
file_type: str = 'tfrecord' | |
class ExampleModel(hyperparams.Config): | |
"""The model config. Used by build_example_model function.""" | |
num_classes: int = 0 | |
input_size: List[int] = dataclasses.field(default_factory=list) | |
class Losses(hyperparams.Config): | |
l2_weight_decay: float = 0.0 | |
class Evaluation(hyperparams.Config): | |
top_k: int = 5 | |
class ExampleTask(cfg.TaskConfig): | |
"""The task config.""" | |
model: ExampleModel = ExampleModel() | |
train_data: ExampleDataConfig = ExampleDataConfig(is_training=True) | |
validation_data: ExampleDataConfig = ExampleDataConfig(is_training=False) | |
losses: Losses = Losses() | |
evaluation: Evaluation = Evaluation() | |
def tf_vision_example_experiment() -> cfg.ExperimentConfig: | |
"""Definition of a full example experiment.""" | |
train_batch_size = 256 | |
eval_batch_size = 256 | |
steps_per_epoch = 10 | |
config = cfg.ExperimentConfig( | |
task=ExampleTask( | |
model=ExampleModel(num_classes=10, input_size=[128, 128, 3]), | |
losses=Losses(l2_weight_decay=1e-4), | |
train_data=ExampleDataConfig( | |
input_path='/path/to/train*', | |
is_training=True, | |
global_batch_size=train_batch_size), | |
validation_data=ExampleDataConfig( | |
input_path='/path/to/valid*', | |
is_training=False, | |
global_batch_size=eval_batch_size)), | |
trainer=cfg.TrainerConfig( | |
steps_per_loop=steps_per_epoch, | |
summary_interval=steps_per_epoch, | |
checkpoint_interval=steps_per_epoch, | |
train_steps=90 * steps_per_epoch, | |
validation_steps=steps_per_epoch, | |
validation_interval=steps_per_epoch, | |
optimizer_config=optimization.OptimizationConfig({ | |
'optimizer': { | |
'type': 'sgd', | |
'sgd': { | |
'momentum': 0.9 | |
} | |
}, | |
'learning_rate': { | |
'type': 'cosine', | |
'cosine': { | |
'initial_learning_rate': 1.6, | |
'decay_steps': 350 * steps_per_epoch | |
} | |
}, | |
'warmup': { | |
'type': 'linear', | |
'linear': { | |
'warmup_steps': 5 * steps_per_epoch, | |
'warmup_learning_rate': 0 | |
} | |
} | |
})), | |
restrictions=[ | |
'task.train_data.is_training != None', | |
'task.validation_data.is_training != None' | |
]) | |
return config | |