Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for resnet_deeplab models.""" | |
# Import libraries | |
from absl.testing import parameterized | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from tensorflow.python.distribute import combinations | |
from tensorflow.python.distribute import strategy_combinations | |
from official.vision.modeling.backbones import resnet_deeplab | |
class ResNetTest(parameterized.TestCase, tf.test.TestCase): | |
def test_network_creation(self, input_size, model_id, | |
endpoint_filter_scale, output_stride): | |
"""Test creation of ResNet models.""" | |
tf_keras.backend.set_image_data_format('channels_last') | |
network = resnet_deeplab.DilatedResNet(model_id=model_id, | |
output_stride=output_stride) | |
inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1) | |
endpoints = network(inputs) | |
print(endpoints) | |
self.assertAllEqual([ | |
1, input_size / output_stride, input_size / output_stride, | |
512 * endpoint_filter_scale | |
], endpoints[str(int(np.math.log2(output_stride)))].shape.as_list()) | |
def test_network_features(self, stem_type, se_ratio, | |
init_stochastic_depth_rate, resnetd_shortcut, | |
replace_stem_max_pool): | |
"""Test additional features of ResNet models.""" | |
input_size = 128 | |
model_id = 50 | |
endpoint_filter_scale = 4 | |
output_stride = 8 | |
tf_keras.backend.set_image_data_format('channels_last') | |
network = resnet_deeplab.DilatedResNet( | |
model_id=model_id, | |
output_stride=output_stride, | |
stem_type=stem_type, | |
resnetd_shortcut=resnetd_shortcut, | |
replace_stem_max_pool=replace_stem_max_pool, | |
se_ratio=se_ratio, | |
init_stochastic_depth_rate=init_stochastic_depth_rate) | |
inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1) | |
endpoints = network(inputs) | |
print(endpoints) | |
self.assertAllEqual([ | |
1, input_size / output_stride, input_size / output_stride, | |
512 * endpoint_filter_scale | |
], endpoints[str(int(np.math.log2(output_stride)))].shape.as_list()) | |
def test_sync_bn_multiple_devices(self, strategy, use_sync_bn): | |
"""Test for sync bn on TPU and GPU devices.""" | |
inputs = np.random.rand(64, 128, 128, 3) | |
tf_keras.backend.set_image_data_format('channels_last') | |
with strategy.scope(): | |
network = resnet_deeplab.DilatedResNet( | |
model_id=50, output_stride=8, use_sync_bn=use_sync_bn) | |
_ = network(inputs) | |
def test_input_specs(self, input_dim): | |
"""Test different input feature dimensions.""" | |
tf_keras.backend.set_image_data_format('channels_last') | |
input_specs = tf_keras.layers.InputSpec(shape=[None, None, None, input_dim]) | |
network = resnet_deeplab.DilatedResNet( | |
model_id=50, output_stride=8, input_specs=input_specs) | |
inputs = tf_keras.Input(shape=(128, 128, input_dim), batch_size=1) | |
_ = network(inputs) | |
def test_serialize_deserialize(self): | |
# Create a network object that sets all of its config options. | |
kwargs = dict( | |
model_id=50, | |
output_stride=8, | |
stem_type='v0', | |
se_ratio=0.25, | |
init_stochastic_depth_rate=0.2, | |
resnetd_shortcut=False, | |
replace_stem_max_pool=False, | |
use_sync_bn=False, | |
activation='relu', | |
norm_momentum=0.99, | |
norm_epsilon=0.001, | |
kernel_initializer='VarianceScaling', | |
kernel_regularizer=None, | |
bias_regularizer=None, | |
) | |
network = resnet_deeplab.DilatedResNet(**kwargs) | |
expected_config = dict(kwargs) | |
self.assertEqual(network.get_config(), expected_config) | |
# Create another network object from the first object's config. | |
new_network = resnet_deeplab.DilatedResNet.from_config(network.get_config()) | |
# Validate that the config can be forced to JSON. | |
_ = new_network.to_json() | |
# If the serialization was successful, the new config should match the old. | |
self.assertAllEqual(network.get_config(), new_network.get_config()) | |
if __name__ == '__main__': | |
tf.test.main() | |