Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for SpineNet.""" | |
# Import libraries | |
from absl.testing import parameterized | |
import tensorflow as tf, tf_keras | |
from official.vision.modeling.backbones import spinenet | |
class SpineNetTest(parameterized.TestCase, tf.test.TestCase): | |
def test_network_creation(self, input_size, filter_size_scale, block_repeats, | |
resample_alpha, endpoints_num_filters, min_level, | |
max_level): | |
"""Test creation of SpineNet models.""" | |
tf_keras.backend.set_image_data_format('channels_last') | |
input_specs = tf_keras.layers.InputSpec( | |
shape=[None, input_size, input_size, 3]) | |
model = spinenet.SpineNet( | |
input_specs=input_specs, | |
min_level=min_level, | |
max_level=max_level, | |
endpoints_num_filters=endpoints_num_filters, | |
resample_alpha=resample_alpha, | |
block_repeats=block_repeats, | |
filter_size_scale=filter_size_scale, | |
init_stochastic_depth_rate=0.2, | |
) | |
inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1) | |
endpoints = model(inputs) | |
for l in range(min_level, max_level + 1): | |
self.assertIn(str(l), endpoints.keys()) | |
self.assertAllEqual( | |
[1, input_size / 2**l, input_size / 2**l, endpoints_num_filters], | |
endpoints[str(l)].shape.as_list()) | |
def test_load_from_different_input_specs(self, input_size_1, input_size_2): | |
"""Test loading checkpoints with different input size.""" | |
def build_spinenet(input_size): | |
tf_keras.backend.set_image_data_format('channels_last') | |
input_specs = tf_keras.layers.InputSpec( | |
shape=[None, input_size[0], input_size[1], 3]) | |
model = spinenet.SpineNet( | |
input_specs=input_specs, | |
min_level=3, | |
max_level=7, | |
endpoints_num_filters=384, | |
resample_alpha=1.0, | |
block_repeats=2, | |
filter_size_scale=0.5) | |
return model | |
model_1 = build_spinenet(input_size_1) | |
model_2 = build_spinenet(input_size_2) | |
ckpt_1 = tf.train.Checkpoint(backbone=model_1) | |
ckpt_2 = tf.train.Checkpoint(backbone=model_2) | |
ckpt_path = self.get_temp_dir() + '/ckpt' | |
ckpt_1.write(ckpt_path) | |
ckpt_2.restore(ckpt_path).expect_partial() | |
def test_serialize_deserialize(self): | |
# Create a network object that sets all of its config options. | |
kwargs = dict( | |
min_level=3, | |
max_level=7, | |
endpoints_num_filters=256, | |
resample_alpha=0.5, | |
block_repeats=1, | |
filter_size_scale=1.0, | |
init_stochastic_depth_rate=0.2, | |
use_sync_bn=False, | |
activation='relu', | |
norm_momentum=0.99, | |
norm_epsilon=0.001, | |
kernel_initializer='VarianceScaling', | |
kernel_regularizer=None, | |
bias_regularizer=None, | |
) | |
network = spinenet.SpineNet(**kwargs) | |
expected_config = dict(kwargs) | |
self.assertEqual(network.get_config(), expected_config) | |
# Create another network object from the first object's config. | |
new_network = spinenet.SpineNet.from_config(network.get_config()) | |
# Validate that the config can be forced to JSON. | |
_ = new_network.to_json() | |
# If the serialization was successful, the new config should match the old. | |
self.assertAllEqual(network.get_config(), new_network.get_config()) | |
def test_activation(self, activation, activation_fn): | |
model = spinenet.SpineNet(activation=activation) | |
self.assertEqual(model._activation_fn, activation_fn) | |
def test_invalid_activation_raises_valurerror(self): | |
with self.assertRaises(ValueError): | |
spinenet.SpineNet(activation='invalid_activation_name') | |
if __name__ == '__main__': | |
tf.test.main() | |