Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for classification network.""" | |
# Import libraries | |
from absl.testing import parameterized | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from tensorflow.python.distribute import combinations | |
from tensorflow.python.distribute import strategy_combinations | |
from official.vision.modeling import backbones | |
from official.vision.modeling import classification_model | |
class ClassificationNetworkTest(parameterized.TestCase, tf.test.TestCase): | |
def test_vision_transformer_creation(self, mlp_dim, num_heads, num_layers, | |
hidden_size, num_params): | |
"""Test for creation of a Vision Transformer classifier.""" | |
inputs = np.random.rand(2, 224, 224, 3) | |
tf_keras.backend.set_image_data_format('channels_last') | |
backbone = backbones.VisionTransformer( | |
mlp_dim=mlp_dim, | |
num_heads=num_heads, | |
num_layers=num_layers, | |
hidden_size=hidden_size, | |
input_specs=tf_keras.layers.InputSpec(shape=[None, 224, 224, 3]), | |
) | |
self.assertEqual(backbone.count_params(), num_params) | |
num_classes = 1000 | |
model = classification_model.ClassificationModel( | |
backbone=backbone, | |
num_classes=num_classes, | |
dropout_rate=0.2, | |
) | |
logits = model(inputs) | |
self.assertAllEqual([2, num_classes], logits.numpy().shape) | |
def test_resnet_network_creation(self, input_size, resnet_model_id, | |
activation): | |
"""Test for creation of a ResNet-50 classifier.""" | |
inputs = np.random.rand(2, input_size, input_size, 3) | |
tf_keras.backend.set_image_data_format('channels_last') | |
backbone = backbones.ResNet(model_id=resnet_model_id, activation=activation) | |
self.assertEqual(backbone.count_params(), 23561152) | |
num_classes = 1000 | |
model = classification_model.ClassificationModel( | |
backbone=backbone, | |
num_classes=num_classes, | |
dropout_rate=0.2, | |
) | |
self.assertEqual(model.count_params(), 25610152) | |
logits = model(inputs) | |
self.assertAllEqual([2, num_classes], logits.numpy().shape) | |
def test_revnet_network_creation(self): | |
"""Test for creation of a RevNet-56 classifier.""" | |
revnet_model_id = 56 | |
inputs = np.random.rand(2, 224, 224, 3) | |
tf_keras.backend.set_image_data_format('channels_last') | |
backbone = backbones.RevNet(model_id=revnet_model_id) | |
self.assertEqual(backbone.count_params(), 19473792) | |
num_classes = 1000 | |
model = classification_model.ClassificationModel( | |
backbone=backbone, | |
num_classes=num_classes, | |
dropout_rate=0.2, | |
add_head_batch_norm=True, | |
) | |
self.assertEqual(model.count_params(), 22816104) | |
logits = model(inputs) | |
self.assertAllEqual([2, num_classes], logits.numpy().shape) | |
def test_mobilenet_network_creation(self, mobilenet_model_id, | |
filter_size_scale): | |
"""Test for creation of a MobileNet classifier.""" | |
inputs = np.random.rand(2, 224, 224, 3) | |
tf_keras.backend.set_image_data_format('channels_last') | |
backbone = backbones.MobileNet( | |
model_id=mobilenet_model_id, filter_size_scale=filter_size_scale) | |
num_classes = 1001 | |
model = classification_model.ClassificationModel( | |
backbone=backbone, | |
num_classes=num_classes, | |
dropout_rate=0.2, | |
) | |
logits = model(inputs) | |
self.assertAllEqual([2, num_classes], logits.numpy().shape) | |
def test_sync_bn_multiple_devices(self, strategy, use_sync_bn): | |
"""Test for sync bn on TPU and GPU devices.""" | |
inputs = np.random.rand(64, 128, 128, 3) | |
tf_keras.backend.set_image_data_format('channels_last') | |
with strategy.scope(): | |
backbone = backbones.ResNet(model_id=50, use_sync_bn=use_sync_bn) | |
model = classification_model.ClassificationModel( | |
backbone=backbone, | |
num_classes=1000, | |
dropout_rate=0.2, | |
) | |
_ = model(inputs) | |
def test_data_format_gpu(self, strategy, data_format, input_dim): | |
"""Test for different data formats on GPU devices.""" | |
if data_format == 'channels_last': | |
inputs = np.random.rand(2, 128, 128, input_dim) | |
else: | |
inputs = np.random.rand(2, input_dim, 128, 128) | |
input_specs = tf_keras.layers.InputSpec(shape=inputs.shape) | |
tf_keras.backend.set_image_data_format(data_format) | |
with strategy.scope(): | |
backbone = backbones.ResNet(model_id=50, input_specs=input_specs) | |
model = classification_model.ClassificationModel( | |
backbone=backbone, | |
num_classes=1000, | |
input_specs=input_specs, | |
) | |
_ = model(inputs) | |
def test_serialize_deserialize(self): | |
"""Validate the classification net can be serialized and deserialized.""" | |
tf_keras.backend.set_image_data_format('channels_last') | |
backbone = backbones.ResNet(model_id=50) | |
model = classification_model.ClassificationModel( | |
backbone=backbone, num_classes=1000) | |
config = model.get_config() | |
new_model = classification_model.ClassificationModel.from_config(config) | |
# Validate that the config can be forced to JSON. | |
_ = new_model.to_json() | |
# If the serialization was successful, the new config should match the old. | |
self.assertAllEqual(model.get_config(), new_model.get_config()) | |
if __name__ == '__main__': | |
tf.test.main() | |