Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Factory methods to build models.""" | |
# Import libraries | |
import tensorflow as tf, tf_keras | |
from official.core import registry | |
from official.vision.configs import video_classification as video_classification_cfg | |
from official.vision.modeling import video_classification_model | |
from official.vision.modeling import backbones | |
_REGISTERED_MODEL_CLS = {} | |
def register_model_builder(key: str): | |
"""Decorates a builder of model class. | |
The builder should be a Callable (a class or a function). | |
This decorator supports registration of backbone builder as follows: | |
``` | |
class MyModel(tf_keras.Model): | |
pass | |
@register_backbone_builder('mybackbone') | |
def builder(input_specs, config, l2_reg): | |
return MyModel(...) | |
# Builds a MyModel object. | |
my_backbone = build_backbone_3d(input_specs, config, l2_reg) | |
``` | |
Args: | |
key: the key to look up the builder. | |
Returns: | |
A callable for use as class decorator that registers the decorated class | |
for creation from an instance of model class. | |
""" | |
return registry.register(_REGISTERED_MODEL_CLS, key) | |
def build_model( | |
model_type: str, | |
input_specs: tf_keras.layers.InputSpec, | |
model_config: video_classification_cfg.hyperparams.Config, | |
num_classes: int, | |
l2_regularizer: tf_keras.regularizers.Regularizer = None) -> tf_keras.Model: | |
"""Builds backbone from a config. | |
Args: | |
model_type: string name of model type. It should be consistent with | |
ModelConfig.model_type. | |
input_specs: tf_keras.layers.InputSpec. | |
model_config: a OneOfConfig. Model config. | |
num_classes: number of classes. | |
l2_regularizer: tf_keras.regularizers.Regularizer instance. Default to None. | |
Returns: | |
tf_keras.Model instance of the backbone. | |
""" | |
model_builder = registry.lookup(_REGISTERED_MODEL_CLS, model_type) | |
return model_builder(input_specs, model_config, num_classes, l2_regularizer) | |
def build_video_classification_model( | |
input_specs: tf_keras.layers.InputSpec, | |
model_config: video_classification_cfg.VideoClassificationModel, | |
num_classes: int, | |
l2_regularizer: tf_keras.regularizers.Regularizer = None) -> tf_keras.Model: | |
"""Builds the video classification model.""" | |
input_specs_dict = {'image': input_specs} | |
norm_activation_config = model_config.norm_activation | |
backbone = backbones.factory.build_backbone( | |
input_specs=input_specs, | |
backbone_config=model_config.backbone, | |
norm_activation_config=norm_activation_config, | |
l2_regularizer=l2_regularizer) | |
model = video_classification_model.VideoClassificationModel( | |
backbone=backbone, | |
num_classes=num_classes, | |
input_specs=input_specs_dict, | |
dropout_rate=model_config.dropout_rate, | |
aggregate_endpoints=model_config.aggregate_endpoints, | |
kernel_regularizer=l2_regularizer, | |
require_endpoints=model_config.require_endpoints) | |
return model | |