Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for segmentation_heads.py.""" | |
# Import libraries | |
from absl.testing import parameterized | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from official.vision.modeling.heads import segmentation_heads | |
class SegmentationHeadTest(parameterized.TestCase, tf.test.TestCase): | |
def test_forward(self, level, feature_fusion, | |
decoder_min_level, decoder_max_level): | |
backbone_features = { | |
'3': np.random.rand(2, 128, 128, 16), | |
'4': np.random.rand(2, 64, 64, 16), | |
'5': np.random.rand(2, 32, 32, 16), | |
} | |
decoder_features = { | |
'3': np.random.rand(2, 128, 128, 64), | |
'4': np.random.rand(2, 64, 64, 64), | |
'5': np.random.rand(2, 32, 32, 64), | |
'6': np.random.rand(2, 16, 16, 64), | |
} | |
if feature_fusion == 'panoptic_fpn_fusion': | |
backbone_features['2'] = np.random.rand(2, 256, 256, 16) | |
decoder_features['2'] = np.random.rand(2, 256, 256, 64) | |
head = segmentation_heads.SegmentationHead( | |
num_classes=10, | |
level=level, | |
low_level=decoder_min_level, | |
low_level_num_filters=64, | |
feature_fusion=feature_fusion, | |
decoder_min_level=decoder_min_level, | |
decoder_max_level=decoder_max_level, | |
num_decoder_filters=64) | |
logits = head((backbone_features, decoder_features)) | |
if str(level) in decoder_features: | |
self.assertAllEqual(logits.numpy().shape, [ | |
2, decoder_features[str(level)].shape[1], | |
decoder_features[str(level)].shape[2], 10 | |
]) | |
def test_serialize_deserialize(self): | |
head = segmentation_heads.SegmentationHead(num_classes=10, level=3) | |
config = head.get_config() | |
new_head = segmentation_heads.SegmentationHead.from_config(config) | |
self.assertAllEqual(head.get_config(), new_head.get_config()) | |
class MaskScoringHeadTest(parameterized.TestCase, tf.test.TestCase): | |
def test_forward(self, num_convs, num_fcs, | |
num_filters, fc_input_size): | |
features = np.random.rand(2, 64, 64, 16) | |
head = segmentation_heads.MaskScoring( | |
num_classes=2, | |
num_convs=num_convs, | |
num_filters=num_filters, | |
fc_dims=128, | |
num_fcs=num_fcs, | |
fc_input_size=fc_input_size) | |
scores = head(features) | |
self.assertAllEqual(scores.numpy().shape, [2, 2]) | |
def test_serialize_deserialize(self): | |
head = segmentation_heads.MaskScoring( | |
num_classes=2, fc_input_size=[4, 4], fc_dims=128) | |
config = head.get_config() | |
new_head = segmentation_heads.MaskScoring.from_config(config) | |
self.assertAllEqual(head.get_config(), new_head.get_config()) | |
if __name__ == '__main__': | |
tf.test.main() | |