Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for segmentation network.""" | |
from absl.testing import parameterized | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from official.vision.modeling import backbones | |
from official.vision.modeling import segmentation_model | |
from official.vision.modeling.decoders import fpn | |
from official.vision.modeling.heads import segmentation_heads | |
class SegmentationNetworkTest(parameterized.TestCase, tf.test.TestCase): | |
def test_segmentation_network_creation( | |
self, input_size, level): | |
"""Test for creation of a segmentation network.""" | |
num_classes = 10 | |
inputs = np.random.rand(2, input_size, input_size, 3) | |
tf_keras.backend.set_image_data_format('channels_last') | |
backbone = backbones.ResNet(model_id=50) | |
decoder = fpn.FPN( | |
input_specs=backbone.output_specs, min_level=2, max_level=7) | |
head = segmentation_heads.SegmentationHead(num_classes, level=level) | |
model = segmentation_model.SegmentationModel( | |
backbone=backbone, | |
decoder=decoder, | |
head=head, | |
mask_scoring_head=None, | |
) | |
outputs = model(inputs) | |
self.assertAllEqual( | |
[2, input_size // (2**level), input_size // (2**level), num_classes], | |
outputs['logits'].numpy().shape) | |
def test_serialize_deserialize(self): | |
"""Validate the network can be serialized and deserialized.""" | |
num_classes = 3 | |
backbone = backbones.ResNet(model_id=50) | |
decoder = fpn.FPN( | |
input_specs=backbone.output_specs, min_level=3, max_level=7) | |
head = segmentation_heads.SegmentationHead(num_classes, level=3) | |
model = segmentation_model.SegmentationModel( | |
backbone=backbone, | |
decoder=decoder, | |
head=head | |
) | |
config = model.get_config() | |
new_model = segmentation_model.SegmentationModel.from_config(config) | |
# Validate that the config can be forced to JSON. | |
_ = new_model.to_json() | |
# If the serialization was successful, the new config should match the old. | |
self.assertAllEqual(model.get_config(), new_model.get_config()) | |
if __name__ == '__main__': | |
tf.test.main() | |