deanna-emery's picture
updates
93528c6
raw
history blame
2.82 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for segmentation network."""
from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras
from official.vision.modeling import backbones
from official.vision.modeling import segmentation_model
from official.vision.modeling.decoders import fpn
from official.vision.modeling.heads import segmentation_heads
class SegmentationNetworkTest(parameterized.TestCase, tf.test.TestCase):
@parameterized.parameters(
(128, 2),
(128, 3),
(128, 4),
(256, 2),
(256, 3),
(256, 4),
)
def test_segmentation_network_creation(
self, input_size, level):
"""Test for creation of a segmentation network."""
num_classes = 10
inputs = np.random.rand(2, input_size, input_size, 3)
tf_keras.backend.set_image_data_format('channels_last')
backbone = backbones.ResNet(model_id=50)
decoder = fpn.FPN(
input_specs=backbone.output_specs, min_level=2, max_level=7)
head = segmentation_heads.SegmentationHead(num_classes, level=level)
model = segmentation_model.SegmentationModel(
backbone=backbone,
decoder=decoder,
head=head,
mask_scoring_head=None,
)
outputs = model(inputs)
self.assertAllEqual(
[2, input_size // (2**level), input_size // (2**level), num_classes],
outputs['logits'].numpy().shape)
def test_serialize_deserialize(self):
"""Validate the network can be serialized and deserialized."""
num_classes = 3
backbone = backbones.ResNet(model_id=50)
decoder = fpn.FPN(
input_specs=backbone.output_specs, min_level=3, max_level=7)
head = segmentation_heads.SegmentationHead(num_classes, level=3)
model = segmentation_model.SegmentationModel(
backbone=backbone,
decoder=decoder,
head=head
)
config = model.get_config()
new_model = segmentation_model.SegmentationModel.from_config(config)
# Validate that the config can be forced to JSON.
_ = new_model.to_json()
# If the serialization was successful, the new config should match the old.
self.assertAllEqual(model.get_config(), new_model.get_config())
if __name__ == '__main__':
tf.test.main()