Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Build video classification models.""" | |
from typing import Any, Mapping, Optional, Union, List, Text | |
import tensorflow as tf, tf_keras | |
layers = tf_keras.layers | |
class VideoClassificationModel(tf_keras.Model): | |
"""A video classification class builder.""" | |
def __init__( | |
self, | |
backbone: tf_keras.Model, | |
num_classes: int, | |
input_specs: Optional[Mapping[str, tf_keras.layers.InputSpec]] = None, | |
dropout_rate: float = 0.0, | |
aggregate_endpoints: bool = False, | |
kernel_initializer: str = 'random_uniform', | |
kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None, | |
bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None, | |
require_endpoints: Optional[List[Text]] = None, | |
**kwargs): | |
"""Video Classification initialization function. | |
Args: | |
backbone: a 3d backbone network. | |
num_classes: `int` number of classes in classification task. | |
input_specs: `tf_keras.layers.InputSpec` specs of the input tensor. | |
dropout_rate: `float` rate for dropout regularization. | |
aggregate_endpoints: `bool` aggregate all end ponits or only use the | |
final end point. | |
kernel_initializer: kernel initializer for the dense layer. | |
kernel_regularizer: tf_keras.regularizers.Regularizer object. Default to | |
None. | |
bias_regularizer: tf_keras.regularizers.Regularizer object. Default to | |
None. | |
require_endpoints: the required endpoints for prediction. If None or | |
empty, then only uses the final endpoint. | |
**kwargs: keyword arguments to be passed. | |
""" | |
if not input_specs: | |
input_specs = { | |
'image': layers.InputSpec(shape=[None, None, None, None, 3]) | |
} | |
self._self_setattr_tracking = False | |
self._config_dict = { | |
'backbone': backbone, | |
'num_classes': num_classes, | |
'input_specs': input_specs, | |
'dropout_rate': dropout_rate, | |
'aggregate_endpoints': aggregate_endpoints, | |
'kernel_initializer': kernel_initializer, | |
'kernel_regularizer': kernel_regularizer, | |
'bias_regularizer': bias_regularizer, | |
'require_endpoints': require_endpoints, | |
} | |
self._input_specs = input_specs | |
self._kernel_regularizer = kernel_regularizer | |
self._bias_regularizer = bias_regularizer | |
self._backbone = backbone | |
inputs = { | |
k: tf_keras.Input(shape=v.shape[1:]) for k, v in input_specs.items() | |
} | |
endpoints = backbone(inputs['image']) | |
if aggregate_endpoints: | |
pooled_feats = [] | |
for endpoint in endpoints.values(): | |
x_pool = tf_keras.layers.GlobalAveragePooling3D()(endpoint) | |
pooled_feats.append(x_pool) | |
x = tf.concat(pooled_feats, axis=1) | |
else: | |
if not require_endpoints: | |
# Uses the last endpoint for prediction. | |
x = endpoints[max(endpoints.keys())] | |
x = tf_keras.layers.GlobalAveragePooling3D()(x) | |
else: | |
# Concats all the required endpoints for prediction. | |
outputs = [] | |
for name in require_endpoints: | |
x = endpoints[name] | |
x = tf_keras.layers.GlobalAveragePooling3D()(x) | |
outputs.append(x) | |
x = tf.concat(outputs, axis=1) | |
x = tf_keras.layers.Dropout(dropout_rate)(x) | |
x = tf_keras.layers.Dense( | |
num_classes, kernel_initializer=kernel_initializer, | |
kernel_regularizer=self._kernel_regularizer, | |
bias_regularizer=self._bias_regularizer)( | |
x) | |
super(VideoClassificationModel, self).__init__( | |
inputs=inputs, outputs=x, **kwargs) | |
def checkpoint_items( | |
self) -> Mapping[str, Union[tf_keras.Model, tf_keras.layers.Layer]]: | |
"""Returns a dictionary of items to be additionally checkpointed.""" | |
return dict(backbone=self.backbone) | |
def backbone(self) -> tf_keras.Model: | |
return self._backbone | |
def get_config(self) -> Mapping[str, Any]: | |
return self._config_dict | |
def from_config(cls, config, custom_objects=None): | |
return cls(**config) | |