ASL-MoViNet-T5-translator / official /vision /modeling /video_classification_model.py
deanna-emery's picture
updates
93528c6
raw
history blame
4.71 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Build video classification models."""
from typing import Any, Mapping, Optional, Union, List, Text
import tensorflow as tf, tf_keras
layers = tf_keras.layers
@tf_keras.utils.register_keras_serializable(package='Vision')
class VideoClassificationModel(tf_keras.Model):
"""A video classification class builder."""
def __init__(
self,
backbone: tf_keras.Model,
num_classes: int,
input_specs: Optional[Mapping[str, tf_keras.layers.InputSpec]] = None,
dropout_rate: float = 0.0,
aggregate_endpoints: bool = False,
kernel_initializer: str = 'random_uniform',
kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
require_endpoints: Optional[List[Text]] = None,
**kwargs):
"""Video Classification initialization function.
Args:
backbone: a 3d backbone network.
num_classes: `int` number of classes in classification task.
input_specs: `tf_keras.layers.InputSpec` specs of the input tensor.
dropout_rate: `float` rate for dropout regularization.
aggregate_endpoints: `bool` aggregate all end ponits or only use the
final end point.
kernel_initializer: kernel initializer for the dense layer.
kernel_regularizer: tf_keras.regularizers.Regularizer object. Default to
None.
bias_regularizer: tf_keras.regularizers.Regularizer object. Default to
None.
require_endpoints: the required endpoints for prediction. If None or
empty, then only uses the final endpoint.
**kwargs: keyword arguments to be passed.
"""
if not input_specs:
input_specs = {
'image': layers.InputSpec(shape=[None, None, None, None, 3])
}
self._self_setattr_tracking = False
self._config_dict = {
'backbone': backbone,
'num_classes': num_classes,
'input_specs': input_specs,
'dropout_rate': dropout_rate,
'aggregate_endpoints': aggregate_endpoints,
'kernel_initializer': kernel_initializer,
'kernel_regularizer': kernel_regularizer,
'bias_regularizer': bias_regularizer,
'require_endpoints': require_endpoints,
}
self._input_specs = input_specs
self._kernel_regularizer = kernel_regularizer
self._bias_regularizer = bias_regularizer
self._backbone = backbone
inputs = {
k: tf_keras.Input(shape=v.shape[1:]) for k, v in input_specs.items()
}
endpoints = backbone(inputs['image'])
if aggregate_endpoints:
pooled_feats = []
for endpoint in endpoints.values():
x_pool = tf_keras.layers.GlobalAveragePooling3D()(endpoint)
pooled_feats.append(x_pool)
x = tf.concat(pooled_feats, axis=1)
else:
if not require_endpoints:
# Uses the last endpoint for prediction.
x = endpoints[max(endpoints.keys())]
x = tf_keras.layers.GlobalAveragePooling3D()(x)
else:
# Concats all the required endpoints for prediction.
outputs = []
for name in require_endpoints:
x = endpoints[name]
x = tf_keras.layers.GlobalAveragePooling3D()(x)
outputs.append(x)
x = tf.concat(outputs, axis=1)
x = tf_keras.layers.Dropout(dropout_rate)(x)
x = tf_keras.layers.Dense(
num_classes, kernel_initializer=kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer)(
x)
super(VideoClassificationModel, self).__init__(
inputs=inputs, outputs=x, **kwargs)
@property
def checkpoint_items(
self) -> Mapping[str, Union[tf_keras.Model, tf_keras.layers.Layer]]:
"""Returns a dictionary of items to be additionally checkpointed."""
return dict(backbone=self.backbone)
@property
def backbone(self) -> tf_keras.Model:
return self._backbone
def get_config(self) -> Mapping[str, Any]:
return self._config_dict
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)