Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for video classification network.""" | |
# Import libraries | |
from absl.testing import parameterized | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from official.vision.modeling import backbones | |
from official.vision.modeling import video_classification_model | |
class VideoClassificationNetworkTest(parameterized.TestCase, tf.test.TestCase): | |
def test_resnet3d_network_creation(self, model_id, temporal_size, | |
spatial_size, activation, | |
aggregate_endpoints): | |
"""Test for creation of a ResNet3D-50 classifier.""" | |
input_specs = tf_keras.layers.InputSpec( | |
shape=[None, temporal_size, spatial_size, spatial_size, 3]) | |
temporal_strides = [1, 1, 1, 1] | |
temporal_kernel_sizes = [(3, 3, 3), (3, 1, 3, 1), (3, 1, 3, 1, 3, 1), | |
(1, 3, 1)] | |
tf_keras.backend.set_image_data_format('channels_last') | |
backbone = backbones.ResNet3D( | |
model_id=model_id, | |
temporal_strides=temporal_strides, | |
temporal_kernel_sizes=temporal_kernel_sizes, | |
input_specs=input_specs, | |
activation=activation) | |
num_classes = 1000 | |
model = video_classification_model.VideoClassificationModel( | |
backbone=backbone, | |
num_classes=num_classes, | |
input_specs={'image': input_specs}, | |
dropout_rate=0.2, | |
aggregate_endpoints=aggregate_endpoints, | |
) | |
inputs = np.random.rand(2, temporal_size, spatial_size, spatial_size, 3) | |
logits = model(inputs) | |
self.assertAllEqual([2, num_classes], logits.numpy().shape) | |
def test_serialize_deserialize(self): | |
"""Validate the classification network can be serialized and deserialized.""" | |
model_id = 50 | |
temporal_strides = [1, 1, 1, 1] | |
temporal_kernel_sizes = [(3, 3, 3), (3, 1, 3, 1), (3, 1, 3, 1, 3, 1), | |
(1, 3, 1)] | |
backbone = backbones.ResNet3D( | |
model_id=model_id, | |
temporal_strides=temporal_strides, | |
temporal_kernel_sizes=temporal_kernel_sizes) | |
model = video_classification_model.VideoClassificationModel( | |
backbone=backbone, num_classes=1000) | |
config = model.get_config() | |
new_model = video_classification_model.VideoClassificationModel.from_config( | |
config) | |
# Validate that the config can be forced to JSON. | |
_ = new_model.to_json() | |
# If the serialization was successful, the new config should match the old. | |
self.assertAllEqual(model.get_config(), new_model.get_config()) | |
if __name__ == '__main__': | |
tf.test.main() | |