ASL-MoViNet-T5-translator / official /vision /modeling /video_classification_model_test.py
deanna-emery's picture
updates
93528c6
raw
history blame
3.27 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for video classification network."""
# Import libraries
from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras
from official.vision.modeling import backbones
from official.vision.modeling import video_classification_model
class VideoClassificationNetworkTest(parameterized.TestCase, tf.test.TestCase):
@parameterized.parameters(
(50, 8, 112, 'relu', False),
(50, 8, 112, 'swish', True),
)
def test_resnet3d_network_creation(self, model_id, temporal_size,
spatial_size, activation,
aggregate_endpoints):
"""Test for creation of a ResNet3D-50 classifier."""
input_specs = tf_keras.layers.InputSpec(
shape=[None, temporal_size, spatial_size, spatial_size, 3])
temporal_strides = [1, 1, 1, 1]
temporal_kernel_sizes = [(3, 3, 3), (3, 1, 3, 1), (3, 1, 3, 1, 3, 1),
(1, 3, 1)]
tf_keras.backend.set_image_data_format('channels_last')
backbone = backbones.ResNet3D(
model_id=model_id,
temporal_strides=temporal_strides,
temporal_kernel_sizes=temporal_kernel_sizes,
input_specs=input_specs,
activation=activation)
num_classes = 1000
model = video_classification_model.VideoClassificationModel(
backbone=backbone,
num_classes=num_classes,
input_specs={'image': input_specs},
dropout_rate=0.2,
aggregate_endpoints=aggregate_endpoints,
)
inputs = np.random.rand(2, temporal_size, spatial_size, spatial_size, 3)
logits = model(inputs)
self.assertAllEqual([2, num_classes], logits.numpy().shape)
def test_serialize_deserialize(self):
"""Validate the classification network can be serialized and deserialized."""
model_id = 50
temporal_strides = [1, 1, 1, 1]
temporal_kernel_sizes = [(3, 3, 3), (3, 1, 3, 1), (3, 1, 3, 1, 3, 1),
(1, 3, 1)]
backbone = backbones.ResNet3D(
model_id=model_id,
temporal_strides=temporal_strides,
temporal_kernel_sizes=temporal_kernel_sizes)
model = video_classification_model.VideoClassificationModel(
backbone=backbone, num_classes=1000)
config = model.get_config()
new_model = video_classification_model.VideoClassificationModel.from_config(
config)
# Validate that the config can be forced to JSON.
_ = new_model.to_json()
# If the serialization was successful, the new config should match the old.
self.assertAllEqual(model.get_config(), new_model.get_config())
if __name__ == '__main__':
tf.test.main()