Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Loads dataset for the dual encoder (retrieval) task.""" | |
import dataclasses | |
import functools | |
import itertools | |
from typing import Iterable, Mapping, Optional, Tuple | |
import tensorflow as tf, tf_keras | |
import tensorflow_hub as hub | |
from official.common import dataset_fn | |
from official.core import config_definitions as cfg | |
from official.core import input_reader | |
from official.nlp.data import data_loader | |
from official.nlp.data import data_loader_factory | |
from official.nlp.modeling import layers | |
class DualEncoderDataConfig(cfg.DataConfig): | |
"""Data config for dual encoder task (tasks/dual_encoder).""" | |
# Either set `input_path`... | |
input_path: str = '' | |
# ...or `tfds_name` and `tfds_split` to specify input. | |
tfds_name: str = '' | |
tfds_split: str = '' | |
global_batch_size: int = 32 | |
# Either build preprocessing with Python code by specifying these values... | |
vocab_file: str = '' | |
lower_case: bool = True | |
# ...or load preprocessing from a SavedModel at this location. | |
preprocessing_hub_module_url: str = '' | |
left_text_fields: Tuple[str] = ('left_input',) | |
right_text_fields: Tuple[str] = ('right_input',) | |
is_training: bool = True | |
seq_length: int = 128 | |
file_type: str = 'tfrecord' | |
class DualEncoderDataLoader(data_loader.DataLoader): | |
"""A class to load dataset for dual encoder task (tasks/dual_encoder).""" | |
def __init__(self, params): | |
if bool(params.tfds_name) == bool(params.input_path): | |
raise ValueError('Must specify either `tfds_name` and `tfds_split` ' | |
'or `input_path`.') | |
if bool(params.vocab_file) == bool(params.preprocessing_hub_module_url): | |
raise ValueError('Must specify exactly one of vocab_file (with matching ' | |
'lower_case flag) or preprocessing_hub_module_url.') | |
self._params = params | |
self._seq_length = params.seq_length | |
self._left_text_fields = params.left_text_fields | |
self._right_text_fields = params.right_text_fields | |
if params.preprocessing_hub_module_url: | |
preprocessing_hub_module = hub.load(params.preprocessing_hub_module_url) | |
self._tokenizer = preprocessing_hub_module.tokenize | |
self._pack_inputs = functools.partial( | |
preprocessing_hub_module.bert_pack_inputs, | |
seq_length=params.seq_length) | |
else: | |
self._tokenizer = layers.BertTokenizer( | |
vocab_file=params.vocab_file, lower_case=params.lower_case) | |
self._pack_inputs = layers.BertPackInputs( | |
seq_length=params.seq_length, | |
special_tokens_dict=self._tokenizer.get_special_tokens_dict()) | |
def _decode(self, record: tf.Tensor): | |
"""Decodes a serialized tf.Example.""" | |
name_to_features = { | |
x: tf.io.FixedLenFeature([], tf.string) | |
for x in itertools.chain( | |
*[self._left_text_fields, self._right_text_fields]) | |
} | |
example = tf.io.parse_single_example(record, name_to_features) | |
# tf.Example only supports tf.int64, but the TPU only supports tf.int32. | |
# So cast all int64 to int32. | |
for name in example: | |
t = example[name] | |
if t.dtype == tf.int64: | |
t = tf.cast(t, tf.int32) | |
example[name] = t | |
return example | |
def _bert_tokenize( | |
self, record: Mapping[str, tf.Tensor], | |
text_fields: Iterable[str]) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]: | |
"""Tokenize the input in text_fields using BERT tokenizer. | |
Args: | |
record: A tfexample record contains the features. | |
text_fields: A list of fields to be tokenzied. | |
Returns: | |
The tokenized features in a tuple of (input_word_ids, input_mask, | |
input_type_ids). | |
""" | |
segments_text = [record[x] for x in text_fields] | |
segments_tokens = [self._tokenizer(s) for s in segments_text] | |
segments = [tf.cast(x.merge_dims(1, 2), tf.int32) for x in segments_tokens] | |
return self._pack_inputs(segments) | |
def _bert_preprocess( | |
self, record: Mapping[str, tf.Tensor]) -> Mapping[str, tf.Tensor]: | |
"""Perform the bert word piece tokenization for left and right inputs.""" | |
def _switch_prefix(string, old, new): | |
if string.startswith(old): return new + string[len(old):] | |
raise ValueError('Expected {} to start with {}'.format(string, old)) | |
def _switch_key_prefix(d, old, new): | |
return {_switch_prefix(key, old, new): value for key, value in d.items()} # pytype: disable=attribute-error # trace-all-classes | |
model_inputs = _switch_key_prefix( | |
self._bert_tokenize(record, self._left_text_fields), | |
'input_', 'left_') | |
model_inputs.update(_switch_key_prefix( | |
self._bert_tokenize(record, self._right_text_fields), | |
'input_', 'right_')) | |
return model_inputs | |
def load(self, input_context: Optional[tf.distribute.InputContext] = None): | |
"""Returns a tf.dataset.Dataset.""" | |
reader = input_reader.InputReader( | |
params=self._params, | |
# Skip `decoder_fn` for tfds input. | |
decoder_fn=self._decode if self._params.input_path else None, | |
dataset_fn=dataset_fn.pick_dataset_fn(self._params.file_type), | |
postprocess_fn=self._bert_preprocess) | |
return reader.read(input_context) | |