deanna-emery's picture
updates
93528c6
raw
history blame
18.8 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT classification or regression finetuning runner in TF 2.x."""
import functools
import json
import math
import os
# Import libraries
from absl import app
from absl import flags
from absl import logging
import gin
import tensorflow as tf, tf_keras
from official.common import distribute_utils
from official.legacy.bert import bert_models
from official.legacy.bert import common_flags
from official.legacy.bert import configs as bert_configs
from official.legacy.bert import input_pipeline
from official.legacy.bert import model_saving_utils
from official.modeling import performance
from official.nlp import optimization
from official.utils.misc import keras_utils
flags.DEFINE_enum(
'mode', 'train_and_eval', ['train_and_eval', 'export_only', 'predict'],
'One of {"train_and_eval", "export_only", "predict"}. `train_and_eval`: '
'trains the model and evaluates in the meantime. '
'`export_only`: will take the latest checkpoint inside '
'model_dir and export a `SavedModel`. `predict`: takes a checkpoint and '
'restores the model to output predictions on the test set.')
flags.DEFINE_string('train_data_path', None,
'Path to training data for BERT classifier.')
flags.DEFINE_string('eval_data_path', None,
'Path to evaluation data for BERT classifier.')
flags.DEFINE_string(
'input_meta_data_path', None,
'Path to file that contains meta data about input '
'to be used for training and evaluation.')
flags.DEFINE_integer('train_data_size', None, 'Number of training samples '
'to use. If None, uses the full train data. '
'(default: None).')
flags.DEFINE_string('predict_checkpoint_path', None,
'Path to the checkpoint for predictions.')
flags.DEFINE_integer(
'num_eval_per_epoch', 1,
'Number of evaluations per epoch. The purpose of this flag is to provide '
'more granular evaluation scores and checkpoints. For example, if original '
'data has N samples and num_eval_per_epoch is n, then each epoch will be '
'evaluated every N/n samples.')
flags.DEFINE_integer('train_batch_size', 32, 'Batch size for training.')
flags.DEFINE_integer('eval_batch_size', 32, 'Batch size for evaluation.')
common_flags.define_common_bert_flags()
FLAGS = flags.FLAGS
LABEL_TYPES_MAP = {'int': tf.int64, 'float': tf.float32}
def get_loss_fn(num_classes):
"""Gets the classification loss function."""
def classification_loss_fn(labels, logits):
"""Classification loss."""
labels = tf.reshape(labels, [-1])
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(
tf.cast(labels, dtype=tf.int32), depth=num_classes, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(
tf.cast(one_hot_labels, dtype=tf.float32) * log_probs, axis=-1)
return tf.reduce_mean(per_example_loss)
return classification_loss_fn
def get_dataset_fn(input_file_pattern,
max_seq_length,
global_batch_size,
is_training,
label_type=tf.int64,
include_sample_weights=False,
num_samples=None):
"""Gets a closure to create a dataset."""
def _dataset_fn(ctx=None):
"""Returns tf.data.Dataset for distributed BERT pretraining."""
batch_size = ctx.get_per_replica_batch_size(
global_batch_size) if ctx else global_batch_size
dataset = input_pipeline.create_classifier_dataset(
tf.io.gfile.glob(input_file_pattern),
max_seq_length,
batch_size,
is_training=is_training,
input_pipeline_context=ctx,
label_type=label_type,
include_sample_weights=include_sample_weights,
num_samples=num_samples)
return dataset
return _dataset_fn
def run_bert_classifier(strategy,
bert_config,
input_meta_data,
model_dir,
epochs,
steps_per_epoch,
steps_per_loop,
eval_steps,
warmup_steps,
initial_lr,
init_checkpoint,
train_input_fn,
eval_input_fn,
training_callbacks=True,
custom_callbacks=None,
custom_metrics=None):
"""Run BERT classifier training using low-level API."""
max_seq_length = input_meta_data['max_seq_length']
num_classes = input_meta_data.get('num_labels', 1)
is_regression = num_classes == 1
def _get_classifier_model():
"""Gets a classifier model."""
classifier_model, core_model = (
bert_models.classifier_model(
bert_config,
num_classes,
max_seq_length,
hub_module_url=FLAGS.hub_module_url,
hub_module_trainable=FLAGS.hub_module_trainable))
optimizer = optimization.create_optimizer(initial_lr,
steps_per_epoch * epochs,
warmup_steps, FLAGS.end_lr,
FLAGS.optimizer_type)
classifier_model.optimizer = performance.configure_optimizer(
optimizer,
use_float16=common_flags.use_float16())
return classifier_model, core_model
# tf_keras.losses objects accept optional sample_weight arguments (eg. coming
# from the dataset) to compute weighted loss, as used for the regression
# tasks. The classification tasks, using the custom get_loss_fn don't accept
# sample weights though.
loss_fn = (tf_keras.losses.MeanSquaredError() if is_regression
else get_loss_fn(num_classes))
# Defines evaluation metrics function, which will create metrics in the
# correct device and strategy scope.
if custom_metrics:
metric_fn = custom_metrics
elif is_regression:
metric_fn = functools.partial(
tf_keras.metrics.MeanSquaredError,
'mean_squared_error',
dtype=tf.float32)
else:
metric_fn = functools.partial(
tf_keras.metrics.SparseCategoricalAccuracy,
'accuracy',
dtype=tf.float32)
# Start training using Keras compile/fit API.
logging.info('Training using TF 2.x Keras compile/fit API with '
'distribution strategy.')
return run_keras_compile_fit(
model_dir,
strategy,
_get_classifier_model,
train_input_fn,
eval_input_fn,
loss_fn,
metric_fn,
init_checkpoint,
epochs,
steps_per_epoch,
steps_per_loop,
eval_steps,
training_callbacks=training_callbacks,
custom_callbacks=custom_callbacks)
def run_keras_compile_fit(model_dir,
strategy,
model_fn,
train_input_fn,
eval_input_fn,
loss_fn,
metric_fn,
init_checkpoint,
epochs,
steps_per_epoch,
steps_per_loop,
eval_steps,
training_callbacks=True,
custom_callbacks=None):
"""Runs BERT classifier model using Keras compile/fit API."""
with strategy.scope():
training_dataset = train_input_fn()
evaluation_dataset = eval_input_fn() if eval_input_fn else None
bert_model, sub_model = model_fn()
optimizer = bert_model.optimizer
if init_checkpoint:
checkpoint = tf.train.Checkpoint(model=sub_model, encoder=sub_model)
checkpoint.read(init_checkpoint).assert_existing_objects_matched()
if not isinstance(metric_fn, (list, tuple)):
metric_fn = [metric_fn]
bert_model.compile(
optimizer=optimizer,
loss=loss_fn,
metrics=[fn() for fn in metric_fn],
steps_per_execution=steps_per_loop)
summary_dir = os.path.join(model_dir, 'summaries')
summary_callback = tf_keras.callbacks.TensorBoard(summary_dir)
checkpoint = tf.train.Checkpoint(model=bert_model, optimizer=optimizer)
checkpoint_manager = tf.train.CheckpointManager(
checkpoint,
directory=model_dir,
max_to_keep=None,
step_counter=optimizer.iterations,
checkpoint_interval=0)
checkpoint_callback = keras_utils.SimpleCheckpoint(checkpoint_manager)
if training_callbacks:
if custom_callbacks is not None:
custom_callbacks += [summary_callback, checkpoint_callback]
else:
custom_callbacks = [summary_callback, checkpoint_callback]
history = bert_model.fit(
x=training_dataset,
validation_data=evaluation_dataset,
steps_per_epoch=steps_per_epoch,
epochs=epochs,
validation_steps=eval_steps,
callbacks=custom_callbacks)
stats = {'total_training_steps': steps_per_epoch * epochs}
if 'loss' in history.history:
stats['train_loss'] = history.history['loss'][-1]
if 'val_accuracy' in history.history:
stats['eval_metrics'] = history.history['val_accuracy'][-1]
return bert_model, stats
def get_predictions_and_labels(strategy,
trained_model,
eval_input_fn,
is_regression=False,
return_probs=False):
"""Obtains predictions of trained model on evaluation data.
Note that list of labels is returned along with the predictions because the
order changes on distributing dataset over TPU pods.
Args:
strategy: Distribution strategy.
trained_model: Trained model with preloaded weights.
eval_input_fn: Input function for evaluation data.
is_regression: Whether it is a regression task.
return_probs: Whether to return probabilities of classes.
Returns:
predictions: List of predictions.
labels: List of gold labels corresponding to predictions.
"""
@tf.function
def test_step(iterator):
"""Computes predictions on distributed devices."""
def _test_step_fn(inputs):
"""Replicated predictions."""
inputs, labels = inputs
logits = trained_model(inputs, training=False)
if not is_regression:
probabilities = tf.nn.softmax(logits)
return probabilities, labels
else:
return logits, labels
outputs, labels = strategy.run(_test_step_fn, args=(next(iterator),))
# outputs: current batch logits as a tuple of shard logits
outputs = tf.nest.map_structure(strategy.experimental_local_results,
outputs)
labels = tf.nest.map_structure(strategy.experimental_local_results, labels)
return outputs, labels
def _run_evaluation(test_iterator):
"""Runs evaluation steps."""
preds, golds = list(), list()
try:
with tf.experimental.async_scope():
while True:
probabilities, labels = test_step(test_iterator)
for cur_probs, cur_labels in zip(probabilities, labels):
if return_probs:
preds.extend(cur_probs.numpy().tolist())
else:
preds.extend(tf.math.argmax(cur_probs, axis=1).numpy())
golds.extend(cur_labels.numpy().tolist())
except (StopIteration, tf.errors.OutOfRangeError):
tf.experimental.async_clear_error()
return preds, golds
test_iter = iter(strategy.distribute_datasets_from_function(eval_input_fn))
predictions, labels = _run_evaluation(test_iter)
return predictions, labels
def export_classifier(model_export_path, input_meta_data, bert_config,
model_dir):
"""Exports a trained model as a `SavedModel` for inference.
Args:
model_export_path: a string specifying the path to the SavedModel directory.
input_meta_data: dictionary containing meta data about input and model.
bert_config: Bert configuration file to define core bert layers.
model_dir: The directory where the model weights and training/evaluation
summaries are stored.
Raises:
Export path is not specified, got an empty string or None.
"""
if not model_export_path:
raise ValueError('Export path is not specified: %s' % model_export_path)
if not model_dir:
raise ValueError('Export path is not specified: %s' % model_dir)
# Export uses float32 for now, even if training uses mixed precision.
tf_keras.mixed_precision.set_global_policy('float32')
classifier_model = bert_models.classifier_model(
bert_config,
input_meta_data.get('num_labels', 1),
hub_module_url=FLAGS.hub_module_url,
hub_module_trainable=False)[0]
model_saving_utils.export_bert_model(
model_export_path, model=classifier_model, checkpoint_dir=model_dir)
def run_bert(strategy,
input_meta_data,
model_config,
train_input_fn=None,
eval_input_fn=None,
init_checkpoint=None,
custom_callbacks=None,
custom_metrics=None):
"""Run BERT training."""
# Enables XLA in Session Config. Should not be set for TPU.
keras_utils.set_session_config(FLAGS.enable_xla)
performance.set_mixed_precision_policy(common_flags.dtype())
epochs = FLAGS.num_train_epochs * FLAGS.num_eval_per_epoch
train_data_size = (
input_meta_data['train_data_size'] // FLAGS.num_eval_per_epoch)
if FLAGS.train_data_size:
train_data_size = min(train_data_size, FLAGS.train_data_size)
logging.info('Updated train_data_size: %s', train_data_size)
steps_per_epoch = int(train_data_size / FLAGS.train_batch_size)
warmup_steps = int(epochs * train_data_size * 0.1 / FLAGS.train_batch_size)
eval_steps = int(
math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size))
if not strategy:
raise ValueError('Distribution strategy has not been specified.')
if not custom_callbacks:
custom_callbacks = []
if FLAGS.log_steps:
custom_callbacks.append(
keras_utils.TimeHistory(
batch_size=FLAGS.train_batch_size,
log_steps=FLAGS.log_steps,
logdir=FLAGS.model_dir))
trained_model, _ = run_bert_classifier(
strategy,
model_config,
input_meta_data,
FLAGS.model_dir,
epochs,
steps_per_epoch,
FLAGS.steps_per_loop,
eval_steps,
warmup_steps,
FLAGS.learning_rate,
init_checkpoint or FLAGS.init_checkpoint,
train_input_fn,
eval_input_fn,
custom_callbacks=custom_callbacks,
custom_metrics=custom_metrics)
if FLAGS.model_export_path:
model_saving_utils.export_bert_model(
FLAGS.model_export_path, model=trained_model)
return trained_model
def custom_main(custom_callbacks=None, custom_metrics=None):
"""Run classification or regression.
Args:
custom_callbacks: list of tf_keras.Callbacks passed to training loop.
custom_metrics: list of metrics passed to the training loop.
"""
gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_param)
with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
input_meta_data = json.loads(reader.read().decode('utf-8'))
label_type = LABEL_TYPES_MAP[input_meta_data.get('label_type', 'int')]
include_sample_weights = input_meta_data.get('has_sample_weights', False)
if not FLAGS.model_dir:
FLAGS.model_dir = '/tmp/bert20/'
bert_config = bert_configs.BertConfig.from_json_file(FLAGS.bert_config_file)
if FLAGS.mode == 'export_only':
export_classifier(FLAGS.model_export_path, input_meta_data, bert_config,
FLAGS.model_dir)
return
strategy = distribute_utils.get_distribution_strategy(
distribution_strategy=FLAGS.distribution_strategy,
num_gpus=FLAGS.num_gpus,
tpu_address=FLAGS.tpu)
eval_input_fn = get_dataset_fn(
FLAGS.eval_data_path,
input_meta_data['max_seq_length'],
FLAGS.eval_batch_size,
is_training=False,
label_type=label_type,
include_sample_weights=include_sample_weights)
if FLAGS.mode == 'predict':
num_labels = input_meta_data.get('num_labels', 1)
with strategy.scope():
classifier_model = bert_models.classifier_model(
bert_config, num_labels)[0]
checkpoint = tf.train.Checkpoint(model=classifier_model)
latest_checkpoint_file = (
FLAGS.predict_checkpoint_path or
tf.train.latest_checkpoint(FLAGS.model_dir))
assert latest_checkpoint_file
logging.info('Checkpoint file %s found and restoring from '
'checkpoint', latest_checkpoint_file)
checkpoint.restore(
latest_checkpoint_file).assert_existing_objects_matched()
preds, _ = get_predictions_and_labels(
strategy,
classifier_model,
eval_input_fn,
is_regression=(num_labels == 1),
return_probs=True)
output_predict_file = os.path.join(FLAGS.model_dir, 'test_results.tsv')
with tf.io.gfile.GFile(output_predict_file, 'w') as writer:
logging.info('***** Predict results *****')
for probabilities in preds:
output_line = '\t'.join(
str(class_probability)
for class_probability in probabilities) + '\n'
writer.write(output_line)
return
if FLAGS.mode != 'train_and_eval':
raise ValueError('Unsupported mode is specified: %s' % FLAGS.mode)
train_input_fn = get_dataset_fn(
FLAGS.train_data_path,
input_meta_data['max_seq_length'],
FLAGS.train_batch_size,
is_training=True,
label_type=label_type,
include_sample_weights=include_sample_weights,
num_samples=FLAGS.train_data_size)
run_bert(
strategy,
input_meta_data,
bert_config,
train_input_fn,
eval_input_fn,
custom_callbacks=custom_callbacks,
custom_metrics=custom_metrics)
def main(_):
custom_main(custom_callbacks=None, custom_metrics=None)
if __name__ == '__main__':
flags.mark_flag_as_required('bert_config_file')
flags.mark_flag_as_required('input_meta_data_path')
flags.mark_flag_as_required('model_dir')
app.run(main)