deanna-emery's picture
updates
93528c6
raw
history blame
3.69 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of embedding layer with shared weights."""
import tensorflow as tf, tf_keras
class EmbeddingSharedWeights(tf_keras.layers.Layer):
"""Calculates input embeddings and pre-softmax linear with shared weights."""
def __init__(self, vocab_size, hidden_size):
"""Specify characteristic parameters of embedding layer.
Args:
vocab_size: Number of tokens in the embedding. (Typically ~32,000)
hidden_size: Dimensionality of the embedding. (Typically 512 or 1024)
"""
super(EmbeddingSharedWeights, self).__init__()
self.vocab_size = vocab_size
self.hidden_size = hidden_size
def build(self, input_shape):
"""Build embedding layer."""
with tf.name_scope("embedding_and_softmax"):
# Create and initialize weights. The random normal initializer was chosen
# arbitrarily, and works well.
self.shared_weights = self.add_weight(
"weights",
shape=[self.vocab_size, self.hidden_size],
dtype=tf.float32,
initializer=tf.random_normal_initializer(
mean=0., stddev=self.hidden_size**-0.5))
super(EmbeddingSharedWeights, self).build(input_shape)
def get_config(self):
return {
"vocab_size": self.vocab_size,
"hidden_size": self.hidden_size,
}
def call(self, inputs, mode="embedding"):
"""Get token embeddings of inputs.
Args:
inputs: An int64 tensor with shape [batch_size, length]
mode: string, a valid value is one of "embedding" and "linear".
Returns:
outputs: (1) If mode == "embedding", output embedding tensor, float32 with
shape [batch_size, length, embedding_size]; (2) mode == "linear", output
linear tensor, float32 with shape [batch_size, length, vocab_size].
Raises:
ValueError: if mode is not valid.
"""
if mode == "embedding":
return self._embedding(inputs)
elif mode == "linear":
return self._linear(inputs)
else:
raise ValueError("mode {} is not valid.".format(mode))
def _embedding(self, inputs):
"""Applies embedding based on inputs tensor."""
with tf.name_scope("embedding"):
# Create binary mask of size [batch_size, length]
embeddings = tf.gather(self.shared_weights, inputs)
# mask = tf.cast(tf.not_equal(inputs, 0), embeddings.dtype)
# embeddings *= tf.expand_dims(mask, -1)
# Scale embedding by the sqrt of the hidden size
embeddings *= self.hidden_size**0.5
return embeddings
def _linear(self, inputs):
"""Computes logits by running inputs through a linear layer.
Args:
inputs: A float32 tensor with shape [batch_size, length, hidden_size]
Returns:
float32 tensor with shape [batch_size, length, vocab_size].
"""
with tf.name_scope("presoftmax_linear"):
batch_size = tf.shape(inputs)[0]
length = tf.shape(inputs)[1]
x = tf.reshape(inputs, [-1, self.hidden_size])
logits = tf.matmul(x, self.shared_weights, transpose_b=True)
return tf.reshape(logits, [batch_size, length, self.vocab_size])