deanna-emery's picture
updates
ceb9afe
raw
history blame
3.79 kB
import cv2
import numpy as np
import gradio as gr
import tensorflow as tf, tf_keras
import tensorflow_hub as hub
from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM
from official.projects.movinet.modeling import movinet
from official.projects.movinet.modeling import movinet_model_a2_modified as movinet_model_modified
movinet_path = 'movinet_checkpoints_a2_epoch9'
movinet_model = tf_keras.models.load_model(movinet_path)
movinet_model.trainable = False
tokenizer = AutoTokenizer.from_pretrained("t5-base")
t5_model = TFAutoModelForSeq2SeqLM.from_pretrained("deanna-emery/ASL_t5_movinet_sentence")
t5_model.trainable = False
def crop_center_square(frame):
y, x = frame.shape[0:2]
if x > y:
start_x = (x-y)/2
end_x = start_x + y
start_x = int(start_x)
end_x = int(end_x)
return frame[:, int(start_x):int(end_x)]
else:
return frame
def preprocess(filename, max_frames=0, resize=(224,224)):
video_capture = cv2.VideoCapture(filename)
frames = []
try:
while video_capture.isOpened():
ret, frame = video_capture.read()
if not ret:
break
frame = crop_center_square(frame)
frame = cv2.resize(frame, resize)
frame = frame[:, :, [2, 1, 0]]
frames.append(frame)
if len(frames) == max_frames:
break
finally:
video_capture.release()
video = np.array(frames) / 255.0
video = np.expand_dims(video, axis=0)
return video
def translate(video_file):
video = preprocess(video_file, max_frames=0, resize=(224,224))
embeddings = movinet_model(video)['vid_embedding']
tokens = t5_model.generate(inputs_embeds = embeddings,
max_new_tokens=128,
temperature=0.1,
no_repeat_ngram_size=2,
do_sample=True,
top_k=80,
top_p=0.90,
)
translation = tokenizer.batch_decode(tokens, skip_special_tokens=True)
return {"translation":translation}
# Gradio App config
title = "ASL Translation (MoViNet + T5)"
examples = [
["videos/My second ASL professor's name was Will White.mp4"],
['videos/You are my sunshine.mp4'],
['videos/scrub your hands for at least 20 seconds.mp4'],
['videos/no.mp4'],
['videos/all.mp4']
['videos/white.mp4']
]
# examples = [
# ["videos/My second ASL professor's name was Will White.mp4", "My second ASL professor's name was Will White"],
# ['videos/You are my sunshine.mp4', 'You are my sunshine'],
# ['videos/scrub your hands for at least 20 seconds.mp4', 'scrub your hands for at least 20 seconds'],
# ['videos/no.mp4', 'no'],
# ['videos/all.mp4', 'all']
# ['videos/white.mp4', 'white']
# ]
description = "Gradio demo of word-level sign language classification using I3D model pretrained on the WLASL video dataset. " \
"WLASL is a large-scale dataset containing more than 2000 words in American Sign Language. " \
"Examples used in the demo are videos from the the test subset. " \
"Note that WLASL100 contains 100 words while WLASL2000 contains 2000."
article = "More information about the trained models can be found <a href=https://github.com/deanna-emery/ASL-Translator/>here</a>."
# Gradio App interface
gr.Interface(fn=translate,
inputs="video",
outputs="text",
allow_flagging="never",
title=title,
description=description,
examples=examples,
article=article).launch()