Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Optimizers.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import functools | |
import tensorflow as tf, tf_keras | |
class OptimizerFactory(object): | |
"""Class to generate optimizer function.""" | |
def __init__(self, params): | |
"""Creates optimized based on the specified flags.""" | |
if params.type == 'momentum': | |
self._optimizer = functools.partial( | |
tf_keras.optimizers.SGD, | |
momentum=params.momentum, | |
nesterov=params.nesterov) | |
elif params.type == 'adam': | |
self._optimizer = tf_keras.optimizers.Adam | |
elif params.type == 'adadelta': | |
self._optimizer = tf_keras.optimizers.Adadelta | |
elif params.type == 'adagrad': | |
self._optimizer = tf_keras.optimizers.Adagrad | |
elif params.type == 'rmsprop': | |
self._optimizer = functools.partial( | |
tf_keras.optimizers.RMSprop, momentum=params.momentum) | |
else: | |
raise ValueError('Unsupported optimizer type `{}`.'.format(params.type)) | |
def __call__(self, learning_rate): | |
return self._optimizer(learning_rate=learning_rate) | |