deanna-emery's picture
updates
93528c6
raw
history blame
14.2 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Data parser and processing for Mask R-CNN."""
import tensorflow as tf, tf_keras
from official.legacy.detection.dataloader import anchor
from official.legacy.detection.dataloader.maskrcnn_parser import Parser as MaskrcnnParser
from official.legacy.detection.utils import box_utils
from official.legacy.detection.utils import class_utils
from official.legacy.detection.utils import input_utils
class Parser(MaskrcnnParser):
"""Parser to parse an image and its annotations into a dictionary of tensors."""
def __init__(self,
output_size,
min_level,
max_level,
num_scales,
aspect_ratios,
anchor_size,
rpn_match_threshold=0.7,
rpn_unmatched_threshold=0.3,
rpn_batch_size_per_im=256,
rpn_fg_fraction=0.5,
aug_rand_hflip=False,
aug_scale_min=1.0,
aug_scale_max=1.0,
skip_crowd_during_training=True,
max_num_instances=100,
include_mask=False,
mask_crop_size=112,
use_bfloat16=True,
mode=None,
# for centerness learning.
has_centerness=False,
rpn_center_match_iou_threshold=0.3,
rpn_center_unmatched_iou_threshold=0.1,
rpn_num_center_samples_per_im=256,
# for class manipulation.
class_agnostic=False,
train_class='all',
):
"""Initializes parameters for parsing annotations in the dataset.
Args:
output_size: `Tensor` or `list` for [height, width] of output image. The
output_size should be divided by the largest feature stride 2^max_level.
min_level: `int` number of minimum level of the output feature pyramid.
max_level: `int` number of maximum level of the output feature pyramid.
num_scales: `int` number representing intermediate scales added
on each level. For instances, num_scales=2 adds one additional
intermediate anchor scales [2^0, 2^0.5] on each level.
aspect_ratios: `list` of float numbers representing the aspect raito
anchors added on each level. The number indicates the ratio of width to
height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors
on each scale level.
anchor_size: `float` number representing the scale of size of the base
anchor to the feature stride 2^level.
rpn_match_threshold:
rpn_unmatched_threshold:
rpn_batch_size_per_im:
rpn_fg_fraction:
aug_rand_hflip: `bool`, if True, augment training with random
horizontal flip.
aug_scale_min: `float`, the minimum scale applied to `output_size` for
data augmentation during training.
aug_scale_max: `float`, the maximum scale applied to `output_size` for
data augmentation during training.
skip_crowd_during_training: `bool`, if True, skip annotations labeled with
`is_crowd` equals to 1.
max_num_instances: `int` number of maximum number of instances in an
image. The groundtruth data will be padded to `max_num_instances`.
include_mask: a bool to indicate whether parse mask groundtruth.
mask_crop_size: the size which groundtruth mask is cropped to.
use_bfloat16: `bool`, if True, cast output image to tf.bfloat16.
mode: a ModeKeys. Specifies if this is training, evaluation, prediction
or prediction with groundtruths in the outputs.
has_centerness: whether to create centerness targets
rpn_center_match_iou_threshold: iou threshold for valid centerness samples
,set to 0.3 by default.
rpn_center_unmatched_iou_threshold: iou threshold for invalid centerness
samples, set to 0.1 by default.
rpn_num_center_samples_per_im: number of centerness samples per image,
256 by default.
class_agnostic: whether to merge class ids into one foreground(=1) class,
False by default.
train_class: 'all' or 'voc' or 'nonvoc', 'all' by default.
"""
super(Parser, self).__init__(
output_size=output_size,
min_level=min_level,
max_level=max_level,
num_scales=num_scales,
aspect_ratios=aspect_ratios,
anchor_size=anchor_size,
rpn_match_threshold=rpn_match_threshold,
rpn_unmatched_threshold=rpn_unmatched_threshold,
rpn_batch_size_per_im=rpn_batch_size_per_im,
rpn_fg_fraction=rpn_fg_fraction,
aug_rand_hflip=aug_rand_hflip,
aug_scale_min=aug_scale_min,
aug_scale_max=aug_scale_max,
skip_crowd_during_training=skip_crowd_during_training,
max_num_instances=max_num_instances,
include_mask=include_mask,
mask_crop_size=mask_crop_size,
use_bfloat16=use_bfloat16,
mode=mode,)
# Centerness target assigning.
self._has_centerness = has_centerness
self._rpn_center_match_iou_threshold = rpn_center_match_iou_threshold
self._rpn_center_unmatched_iou_threshold = (
rpn_center_unmatched_iou_threshold)
self._rpn_num_center_samples_per_im = rpn_num_center_samples_per_im
# Class manipulation.
self._class_agnostic = class_agnostic
self._train_class = train_class
def _parse_train_data(self, data):
"""Parses data for training.
Args:
data: the decoded tensor dictionary from TfExampleDecoder.
Returns:
image: image tensor that is preproessed to have normalized value and
dimension [output_size[0], output_size[1], 3]
labels: a dictionary of tensors used for training. The following describes
{key: value} pairs in the dictionary.
image_info: a 2D `Tensor` that encodes the information of the image and
the applied preprocessing. It is in the format of
[[original_height, original_width], [scaled_height, scaled_width],
anchor_boxes: ordered dictionary with keys
[min_level, min_level+1, ..., max_level]. The values are tensor with
shape [height_l, width_l, 4] representing anchor boxes at each level.
rpn_score_targets: ordered dictionary with keys
[min_level, min_level+1, ..., max_level]. The values are tensor with
shape [height_l, width_l, anchors_per_location]. The height_l and
width_l represent the dimension of class logits at l-th level.
rpn_box_targets: ordered dictionary with keys
[min_level, min_level+1, ..., max_level]. The values are tensor with
shape [height_l, width_l, anchors_per_location * 4]. The height_l and
width_l represent the dimension of bounding box regression output at
l-th level.
gt_boxes: Groundtruth bounding box annotations. The box is represented
in [y1, x1, y2, x2] format. The coordinates are w.r.t the scaled
image that is fed to the network. The tennsor is padded with -1 to
the fixed dimension [self._max_num_instances, 4].
gt_classes: Groundtruth classes annotations. The tennsor is padded
with -1 to the fixed dimension [self._max_num_instances].
gt_masks: groundtrugh masks cropped by the bounding box and
resized to a fixed size determined by mask_crop_size.
"""
classes = data['groundtruth_classes']
boxes = data['groundtruth_boxes']
if self._include_mask:
masks = data['groundtruth_instance_masks']
is_crowds = data['groundtruth_is_crowd']
# Skips annotations with `is_crowd` = True.
if self._skip_crowd_during_training and self._is_training:
num_groundtruths = tf.shape(classes)[0]
with tf.control_dependencies([num_groundtruths, is_crowds]):
indices = tf.cond(
tf.greater(tf.size(is_crowds), 0),
lambda: tf.where(tf.logical_not(is_crowds))[:, 0],
lambda: tf.cast(tf.range(num_groundtruths), tf.int64))
classes = tf.gather(classes, indices)
boxes = tf.gather(boxes, indices)
if self._include_mask:
masks = tf.gather(masks, indices)
# Gets original image and its size.
image = data['image']
image_shape = tf.shape(image)[0:2]
# Normalizes image with mean and std pixel values.
image = input_utils.normalize_image(image)
# Flips image randomly during training.
if self._aug_rand_hflip:
if self._include_mask:
image, boxes, masks = input_utils.random_horizontal_flip(
image, boxes, masks)
else:
image, boxes = input_utils.random_horizontal_flip(
image, boxes)
# Converts boxes from normalized coordinates to pixel coordinates.
# Now the coordinates of boxes are w.r.t. the original image.
boxes = box_utils.denormalize_boxes(boxes, image_shape)
# Resizes and crops image.
image, image_info = input_utils.resize_and_crop_image(
image,
self._output_size,
padded_size=input_utils.compute_padded_size(
self._output_size, 2 ** self._max_level),
aug_scale_min=self._aug_scale_min,
aug_scale_max=self._aug_scale_max)
image_height, image_width, _ = image.get_shape().as_list()
# Resizes and crops boxes.
# Now the coordinates of boxes are w.r.t the scaled image.
image_scale = image_info[2, :]
offset = image_info[3, :]
boxes = input_utils.resize_and_crop_boxes(
boxes, image_scale, image_info[1, :], offset)
# Filters out ground truth boxes that are all zeros.
indices = box_utils.get_non_empty_box_indices(boxes)
boxes = tf.gather(boxes, indices)
classes = tf.gather(classes, indices)
if self._include_mask:
masks = tf.gather(masks, indices)
# Transfer boxes to the original image space and do normalization.
cropped_boxes = boxes + tf.tile(tf.expand_dims(offset, axis=0), [1, 2])
cropped_boxes /= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2])
cropped_boxes = box_utils.normalize_boxes(cropped_boxes, image_shape)
num_masks = tf.shape(masks)[0]
masks = tf.image.crop_and_resize(
tf.expand_dims(masks, axis=-1),
cropped_boxes,
box_indices=tf.range(num_masks, dtype=tf.int32),
crop_size=[self._mask_crop_size, self._mask_crop_size],
method='bilinear')
masks = tf.squeeze(masks, axis=-1)
# Class manipulation.
# Filter out novel split classes from training.
if self._train_class != 'all':
valid_classes = tf.cast(
class_utils.coco_split_class_ids(self._train_class),
dtype=classes.dtype)
match = tf.reduce_any(tf.equal(
tf.expand_dims(valid_classes, 1),
tf.expand_dims(classes, 0)), 0)
# kill novel split classes and boxes.
boxes = tf.gather(boxes, tf.where(match)[:, 0])
classes = tf.gather(classes, tf.where(match)[:, 0])
if self._include_mask:
masks = tf.gather(masks, tf.where(match)[:, 0])
# Assigns anchor targets.
# Note that after the target assignment, box targets are absolute pixel
# offsets w.r.t. the scaled image.
input_anchor = anchor.Anchor(
self._min_level,
self._max_level,
self._num_scales,
self._aspect_ratios,
self._anchor_size,
(image_height, image_width))
anchor_labeler = anchor.OlnAnchorLabeler(
input_anchor,
self._rpn_match_threshold,
self._rpn_unmatched_threshold,
self._rpn_batch_size_per_im,
self._rpn_fg_fraction,
# for centerness target.
self._has_centerness,
self._rpn_center_match_iou_threshold,
self._rpn_center_unmatched_iou_threshold,
self._rpn_num_center_samples_per_im,)
if self._has_centerness:
rpn_score_targets, _, rpn_lrtb_targets, rpn_center_targets = (
anchor_labeler.label_anchors_lrtb(
gt_boxes=boxes,
gt_labels=tf.cast(
tf.expand_dims(classes, axis=-1), dtype=tf.float32)))
else:
rpn_score_targets, rpn_box_targets = anchor_labeler.label_anchors(
boxes, tf.cast(tf.expand_dims(classes, axis=-1), dtype=tf.float32))
# For base rpn, dummy placeholder for centerness target.
rpn_center_targets = rpn_score_targets.copy()
# If bfloat16 is used, casts input image to tf.bfloat16.
if self._use_bfloat16:
image = tf.cast(image, dtype=tf.bfloat16)
inputs = {
'image': image,
'image_info': image_info,
}
# Packs labels for model_fn outputs.
labels = {
'anchor_boxes': input_anchor.multilevel_boxes,
'image_info': image_info,
'rpn_score_targets': rpn_score_targets,
'rpn_box_targets': (rpn_lrtb_targets if self._has_centerness
else rpn_box_targets),
'rpn_center_targets': rpn_center_targets,
}
# If class_agnostic, convert to binary classes.
if self._class_agnostic:
classes = tf.where(tf.greater(classes, 0),
tf.ones_like(classes),
tf.zeros_like(classes))
inputs['gt_boxes'] = input_utils.pad_to_fixed_size(boxes,
self._max_num_instances,
-1)
inputs['gt_classes'] = input_utils.pad_to_fixed_size(
classes, self._max_num_instances, -1)
if self._include_mask:
inputs['gt_masks'] = input_utils.pad_to_fixed_size(
masks, self._max_num_instances, -1)
return inputs, labels