Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Data parser and processing for Mask R-CNN.""" | |
import tensorflow as tf, tf_keras | |
from official.legacy.detection.dataloader import anchor | |
from official.legacy.detection.dataloader.maskrcnn_parser import Parser as MaskrcnnParser | |
from official.legacy.detection.utils import box_utils | |
from official.legacy.detection.utils import class_utils | |
from official.legacy.detection.utils import input_utils | |
class Parser(MaskrcnnParser): | |
"""Parser to parse an image and its annotations into a dictionary of tensors.""" | |
def __init__(self, | |
output_size, | |
min_level, | |
max_level, | |
num_scales, | |
aspect_ratios, | |
anchor_size, | |
rpn_match_threshold=0.7, | |
rpn_unmatched_threshold=0.3, | |
rpn_batch_size_per_im=256, | |
rpn_fg_fraction=0.5, | |
aug_rand_hflip=False, | |
aug_scale_min=1.0, | |
aug_scale_max=1.0, | |
skip_crowd_during_training=True, | |
max_num_instances=100, | |
include_mask=False, | |
mask_crop_size=112, | |
use_bfloat16=True, | |
mode=None, | |
# for centerness learning. | |
has_centerness=False, | |
rpn_center_match_iou_threshold=0.3, | |
rpn_center_unmatched_iou_threshold=0.1, | |
rpn_num_center_samples_per_im=256, | |
# for class manipulation. | |
class_agnostic=False, | |
train_class='all', | |
): | |
"""Initializes parameters for parsing annotations in the dataset. | |
Args: | |
output_size: `Tensor` or `list` for [height, width] of output image. The | |
output_size should be divided by the largest feature stride 2^max_level. | |
min_level: `int` number of minimum level of the output feature pyramid. | |
max_level: `int` number of maximum level of the output feature pyramid. | |
num_scales: `int` number representing intermediate scales added | |
on each level. For instances, num_scales=2 adds one additional | |
intermediate anchor scales [2^0, 2^0.5] on each level. | |
aspect_ratios: `list` of float numbers representing the aspect raito | |
anchors added on each level. The number indicates the ratio of width to | |
height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors | |
on each scale level. | |
anchor_size: `float` number representing the scale of size of the base | |
anchor to the feature stride 2^level. | |
rpn_match_threshold: | |
rpn_unmatched_threshold: | |
rpn_batch_size_per_im: | |
rpn_fg_fraction: | |
aug_rand_hflip: `bool`, if True, augment training with random | |
horizontal flip. | |
aug_scale_min: `float`, the minimum scale applied to `output_size` for | |
data augmentation during training. | |
aug_scale_max: `float`, the maximum scale applied to `output_size` for | |
data augmentation during training. | |
skip_crowd_during_training: `bool`, if True, skip annotations labeled with | |
`is_crowd` equals to 1. | |
max_num_instances: `int` number of maximum number of instances in an | |
image. The groundtruth data will be padded to `max_num_instances`. | |
include_mask: a bool to indicate whether parse mask groundtruth. | |
mask_crop_size: the size which groundtruth mask is cropped to. | |
use_bfloat16: `bool`, if True, cast output image to tf.bfloat16. | |
mode: a ModeKeys. Specifies if this is training, evaluation, prediction | |
or prediction with groundtruths in the outputs. | |
has_centerness: whether to create centerness targets | |
rpn_center_match_iou_threshold: iou threshold for valid centerness samples | |
,set to 0.3 by default. | |
rpn_center_unmatched_iou_threshold: iou threshold for invalid centerness | |
samples, set to 0.1 by default. | |
rpn_num_center_samples_per_im: number of centerness samples per image, | |
256 by default. | |
class_agnostic: whether to merge class ids into one foreground(=1) class, | |
False by default. | |
train_class: 'all' or 'voc' or 'nonvoc', 'all' by default. | |
""" | |
super(Parser, self).__init__( | |
output_size=output_size, | |
min_level=min_level, | |
max_level=max_level, | |
num_scales=num_scales, | |
aspect_ratios=aspect_ratios, | |
anchor_size=anchor_size, | |
rpn_match_threshold=rpn_match_threshold, | |
rpn_unmatched_threshold=rpn_unmatched_threshold, | |
rpn_batch_size_per_im=rpn_batch_size_per_im, | |
rpn_fg_fraction=rpn_fg_fraction, | |
aug_rand_hflip=aug_rand_hflip, | |
aug_scale_min=aug_scale_min, | |
aug_scale_max=aug_scale_max, | |
skip_crowd_during_training=skip_crowd_during_training, | |
max_num_instances=max_num_instances, | |
include_mask=include_mask, | |
mask_crop_size=mask_crop_size, | |
use_bfloat16=use_bfloat16, | |
mode=mode,) | |
# Centerness target assigning. | |
self._has_centerness = has_centerness | |
self._rpn_center_match_iou_threshold = rpn_center_match_iou_threshold | |
self._rpn_center_unmatched_iou_threshold = ( | |
rpn_center_unmatched_iou_threshold) | |
self._rpn_num_center_samples_per_im = rpn_num_center_samples_per_im | |
# Class manipulation. | |
self._class_agnostic = class_agnostic | |
self._train_class = train_class | |
def _parse_train_data(self, data): | |
"""Parses data for training. | |
Args: | |
data: the decoded tensor dictionary from TfExampleDecoder. | |
Returns: | |
image: image tensor that is preproessed to have normalized value and | |
dimension [output_size[0], output_size[1], 3] | |
labels: a dictionary of tensors used for training. The following describes | |
{key: value} pairs in the dictionary. | |
image_info: a 2D `Tensor` that encodes the information of the image and | |
the applied preprocessing. It is in the format of | |
[[original_height, original_width], [scaled_height, scaled_width], | |
anchor_boxes: ordered dictionary with keys | |
[min_level, min_level+1, ..., max_level]. The values are tensor with | |
shape [height_l, width_l, 4] representing anchor boxes at each level. | |
rpn_score_targets: ordered dictionary with keys | |
[min_level, min_level+1, ..., max_level]. The values are tensor with | |
shape [height_l, width_l, anchors_per_location]. The height_l and | |
width_l represent the dimension of class logits at l-th level. | |
rpn_box_targets: ordered dictionary with keys | |
[min_level, min_level+1, ..., max_level]. The values are tensor with | |
shape [height_l, width_l, anchors_per_location * 4]. The height_l and | |
width_l represent the dimension of bounding box regression output at | |
l-th level. | |
gt_boxes: Groundtruth bounding box annotations. The box is represented | |
in [y1, x1, y2, x2] format. The coordinates are w.r.t the scaled | |
image that is fed to the network. The tennsor is padded with -1 to | |
the fixed dimension [self._max_num_instances, 4]. | |
gt_classes: Groundtruth classes annotations. The tennsor is padded | |
with -1 to the fixed dimension [self._max_num_instances]. | |
gt_masks: groundtrugh masks cropped by the bounding box and | |
resized to a fixed size determined by mask_crop_size. | |
""" | |
classes = data['groundtruth_classes'] | |
boxes = data['groundtruth_boxes'] | |
if self._include_mask: | |
masks = data['groundtruth_instance_masks'] | |
is_crowds = data['groundtruth_is_crowd'] | |
# Skips annotations with `is_crowd` = True. | |
if self._skip_crowd_during_training and self._is_training: | |
num_groundtruths = tf.shape(classes)[0] | |
with tf.control_dependencies([num_groundtruths, is_crowds]): | |
indices = tf.cond( | |
tf.greater(tf.size(is_crowds), 0), | |
lambda: tf.where(tf.logical_not(is_crowds))[:, 0], | |
lambda: tf.cast(tf.range(num_groundtruths), tf.int64)) | |
classes = tf.gather(classes, indices) | |
boxes = tf.gather(boxes, indices) | |
if self._include_mask: | |
masks = tf.gather(masks, indices) | |
# Gets original image and its size. | |
image = data['image'] | |
image_shape = tf.shape(image)[0:2] | |
# Normalizes image with mean and std pixel values. | |
image = input_utils.normalize_image(image) | |
# Flips image randomly during training. | |
if self._aug_rand_hflip: | |
if self._include_mask: | |
image, boxes, masks = input_utils.random_horizontal_flip( | |
image, boxes, masks) | |
else: | |
image, boxes = input_utils.random_horizontal_flip( | |
image, boxes) | |
# Converts boxes from normalized coordinates to pixel coordinates. | |
# Now the coordinates of boxes are w.r.t. the original image. | |
boxes = box_utils.denormalize_boxes(boxes, image_shape) | |
# Resizes and crops image. | |
image, image_info = input_utils.resize_and_crop_image( | |
image, | |
self._output_size, | |
padded_size=input_utils.compute_padded_size( | |
self._output_size, 2 ** self._max_level), | |
aug_scale_min=self._aug_scale_min, | |
aug_scale_max=self._aug_scale_max) | |
image_height, image_width, _ = image.get_shape().as_list() | |
# Resizes and crops boxes. | |
# Now the coordinates of boxes are w.r.t the scaled image. | |
image_scale = image_info[2, :] | |
offset = image_info[3, :] | |
boxes = input_utils.resize_and_crop_boxes( | |
boxes, image_scale, image_info[1, :], offset) | |
# Filters out ground truth boxes that are all zeros. | |
indices = box_utils.get_non_empty_box_indices(boxes) | |
boxes = tf.gather(boxes, indices) | |
classes = tf.gather(classes, indices) | |
if self._include_mask: | |
masks = tf.gather(masks, indices) | |
# Transfer boxes to the original image space and do normalization. | |
cropped_boxes = boxes + tf.tile(tf.expand_dims(offset, axis=0), [1, 2]) | |
cropped_boxes /= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2]) | |
cropped_boxes = box_utils.normalize_boxes(cropped_boxes, image_shape) | |
num_masks = tf.shape(masks)[0] | |
masks = tf.image.crop_and_resize( | |
tf.expand_dims(masks, axis=-1), | |
cropped_boxes, | |
box_indices=tf.range(num_masks, dtype=tf.int32), | |
crop_size=[self._mask_crop_size, self._mask_crop_size], | |
method='bilinear') | |
masks = tf.squeeze(masks, axis=-1) | |
# Class manipulation. | |
# Filter out novel split classes from training. | |
if self._train_class != 'all': | |
valid_classes = tf.cast( | |
class_utils.coco_split_class_ids(self._train_class), | |
dtype=classes.dtype) | |
match = tf.reduce_any(tf.equal( | |
tf.expand_dims(valid_classes, 1), | |
tf.expand_dims(classes, 0)), 0) | |
# kill novel split classes and boxes. | |
boxes = tf.gather(boxes, tf.where(match)[:, 0]) | |
classes = tf.gather(classes, tf.where(match)[:, 0]) | |
if self._include_mask: | |
masks = tf.gather(masks, tf.where(match)[:, 0]) | |
# Assigns anchor targets. | |
# Note that after the target assignment, box targets are absolute pixel | |
# offsets w.r.t. the scaled image. | |
input_anchor = anchor.Anchor( | |
self._min_level, | |
self._max_level, | |
self._num_scales, | |
self._aspect_ratios, | |
self._anchor_size, | |
(image_height, image_width)) | |
anchor_labeler = anchor.OlnAnchorLabeler( | |
input_anchor, | |
self._rpn_match_threshold, | |
self._rpn_unmatched_threshold, | |
self._rpn_batch_size_per_im, | |
self._rpn_fg_fraction, | |
# for centerness target. | |
self._has_centerness, | |
self._rpn_center_match_iou_threshold, | |
self._rpn_center_unmatched_iou_threshold, | |
self._rpn_num_center_samples_per_im,) | |
if self._has_centerness: | |
rpn_score_targets, _, rpn_lrtb_targets, rpn_center_targets = ( | |
anchor_labeler.label_anchors_lrtb( | |
gt_boxes=boxes, | |
gt_labels=tf.cast( | |
tf.expand_dims(classes, axis=-1), dtype=tf.float32))) | |
else: | |
rpn_score_targets, rpn_box_targets = anchor_labeler.label_anchors( | |
boxes, tf.cast(tf.expand_dims(classes, axis=-1), dtype=tf.float32)) | |
# For base rpn, dummy placeholder for centerness target. | |
rpn_center_targets = rpn_score_targets.copy() | |
# If bfloat16 is used, casts input image to tf.bfloat16. | |
if self._use_bfloat16: | |
image = tf.cast(image, dtype=tf.bfloat16) | |
inputs = { | |
'image': image, | |
'image_info': image_info, | |
} | |
# Packs labels for model_fn outputs. | |
labels = { | |
'anchor_boxes': input_anchor.multilevel_boxes, | |
'image_info': image_info, | |
'rpn_score_targets': rpn_score_targets, | |
'rpn_box_targets': (rpn_lrtb_targets if self._has_centerness | |
else rpn_box_targets), | |
'rpn_center_targets': rpn_center_targets, | |
} | |
# If class_agnostic, convert to binary classes. | |
if self._class_agnostic: | |
classes = tf.where(tf.greater(classes, 0), | |
tf.ones_like(classes), | |
tf.zeros_like(classes)) | |
inputs['gt_boxes'] = input_utils.pad_to_fixed_size(boxes, | |
self._max_num_instances, | |
-1) | |
inputs['gt_classes'] = input_utils.pad_to_fixed_size( | |
classes, self._max_num_instances, -1) | |
if self._include_mask: | |
inputs['gt_masks'] = input_utils.pad_to_fixed_size( | |
masks, self._max_num_instances, -1) | |
return inputs, labels | |