Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Data parser and processing. | |
Parse image and ground truths in a dataset to training targets and package them | |
into (image, labels) tuple for RetinaNet. | |
T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar | |
Focal Loss for Dense Object Detection. arXiv:1708.02002 | |
""" | |
import tensorflow as tf, tf_keras | |
from official.legacy.detection.dataloader import anchor | |
from official.legacy.detection.dataloader import mode_keys as ModeKeys | |
from official.legacy.detection.dataloader import tf_example_decoder | |
from official.legacy.detection.utils import box_utils | |
from official.legacy.detection.utils import input_utils | |
def process_source_id(source_id): | |
"""Processes source_id to the right format.""" | |
if source_id.dtype == tf.string: | |
source_id = tf.cast(tf.strings.to_number(source_id), tf.int32) | |
with tf.control_dependencies([source_id]): | |
source_id = tf.cond( | |
pred=tf.equal(tf.size(input=source_id), 0), | |
true_fn=lambda: tf.cast(tf.constant(-1), tf.int32), | |
false_fn=lambda: tf.identity(source_id)) | |
return source_id | |
def pad_groundtruths_to_fixed_size(gt, n): | |
"""Pads the first dimension of groundtruths labels to the fixed size.""" | |
gt['boxes'] = input_utils.pad_to_fixed_size(gt['boxes'], n, -1) | |
gt['is_crowds'] = input_utils.pad_to_fixed_size(gt['is_crowds'], n, 0) | |
gt['areas'] = input_utils.pad_to_fixed_size(gt['areas'], n, -1) | |
gt['classes'] = input_utils.pad_to_fixed_size(gt['classes'], n, -1) | |
return gt | |
class Parser(object): | |
"""Parser to parse an image and its annotations into a dictionary of tensors.""" | |
def __init__(self, | |
output_size, | |
min_level, | |
max_level, | |
num_scales, | |
aspect_ratios, | |
anchor_size, | |
match_threshold=0.5, | |
unmatched_threshold=0.5, | |
aug_rand_hflip=False, | |
aug_scale_min=1.0, | |
aug_scale_max=1.0, | |
use_autoaugment=False, | |
autoaugment_policy_name='v0', | |
skip_crowd_during_training=True, | |
max_num_instances=100, | |
use_bfloat16=True, | |
mode=None): | |
"""Initializes parameters for parsing annotations in the dataset. | |
Args: | |
output_size: `Tensor` or `list` for [height, width] of output image. The | |
output_size should be divided by the largest feature stride 2^max_level. | |
min_level: `int` number of minimum level of the output feature pyramid. | |
max_level: `int` number of maximum level of the output feature pyramid. | |
num_scales: `int` number representing intermediate scales added on each | |
level. For instances, num_scales=2 adds one additional intermediate | |
anchor scales [2^0, 2^0.5] on each level. | |
aspect_ratios: `list` of float numbers representing the aspect raito | |
anchors added on each level. The number indicates the ratio of width to | |
height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors | |
on each scale level. | |
anchor_size: `float` number representing the scale of size of the base | |
anchor to the feature stride 2^level. | |
match_threshold: `float` number between 0 and 1 representing the | |
lower-bound threshold to assign positive labels for anchors. An anchor | |
with a score over the threshold is labeled positive. | |
unmatched_threshold: `float` number between 0 and 1 representing the | |
upper-bound threshold to assign negative labels for anchors. An anchor | |
with a score below the threshold is labeled negative. | |
aug_rand_hflip: `bool`, if True, augment training with random horizontal | |
flip. | |
aug_scale_min: `float`, the minimum scale applied to `output_size` for | |
data augmentation during training. | |
aug_scale_max: `float`, the maximum scale applied to `output_size` for | |
data augmentation during training. | |
use_autoaugment: `bool`, if True, use the AutoAugment augmentation policy | |
during training. | |
autoaugment_policy_name: `string` that specifies the name of the | |
AutoAugment policy that will be used during training. | |
skip_crowd_during_training: `bool`, if True, skip annotations labeled with | |
`is_crowd` equals to 1. | |
max_num_instances: `int` number of maximum number of instances in an | |
image. The groundtruth data will be padded to `max_num_instances`. | |
use_bfloat16: `bool`, if True, cast output image to tf.bfloat16. | |
mode: a ModeKeys. Specifies if this is training, evaluation, prediction or | |
prediction with groundtruths in the outputs. | |
""" | |
self._mode = mode | |
self._max_num_instances = max_num_instances | |
self._skip_crowd_during_training = skip_crowd_during_training | |
self._is_training = (mode == ModeKeys.TRAIN) | |
self._example_decoder = tf_example_decoder.TfExampleDecoder( | |
include_mask=False) | |
# Anchor. | |
self._output_size = output_size | |
self._min_level = min_level | |
self._max_level = max_level | |
self._num_scales = num_scales | |
self._aspect_ratios = aspect_ratios | |
self._anchor_size = anchor_size | |
self._match_threshold = match_threshold | |
self._unmatched_threshold = unmatched_threshold | |
# Data augmentation. | |
self._aug_rand_hflip = aug_rand_hflip | |
self._aug_scale_min = aug_scale_min | |
self._aug_scale_max = aug_scale_max | |
# Data Augmentation with AutoAugment. | |
self._use_autoaugment = use_autoaugment | |
self._autoaugment_policy_name = autoaugment_policy_name | |
# Device. | |
self._use_bfloat16 = use_bfloat16 | |
# Data is parsed depending on the model Modekey. | |
if mode == ModeKeys.TRAIN: | |
self._parse_fn = self._parse_train_data | |
elif mode == ModeKeys.EVAL: | |
self._parse_fn = self._parse_eval_data | |
elif mode == ModeKeys.PREDICT or mode == ModeKeys.PREDICT_WITH_GT: | |
self._parse_fn = self._parse_predict_data | |
else: | |
raise ValueError('mode is not defined.') | |
def __call__(self, value): | |
"""Parses data to an image and associated training labels. | |
Args: | |
value: a string tensor holding a serialized tf.Example proto. | |
Returns: | |
image: image tensor that is preproessed to have normalized value and | |
dimension [output_size[0], output_size[1], 3] | |
labels: | |
cls_targets: ordered dictionary with keys | |
[min_level, min_level+1, ..., max_level]. The values are tensor with | |
shape [height_l, width_l, anchors_per_location]. The height_l and | |
width_l represent the dimension of class logits at l-th level. | |
box_targets: ordered dictionary with keys | |
[min_level, min_level+1, ..., max_level]. The values are tensor with | |
shape [height_l, width_l, anchors_per_location * 4]. The height_l and | |
width_l represent the dimension of bounding box regression output at | |
l-th level. | |
num_positives: number of positive anchors in the image. | |
anchor_boxes: ordered dictionary with keys | |
[min_level, min_level+1, ..., max_level]. The values are tensor with | |
shape [height_l, width_l, 4] representing anchor boxes at each level. | |
image_info: a 2D `Tensor` that encodes the information of the image and | |
the applied preprocessing. It is in the format of | |
[[original_height, original_width], [scaled_height, scaled_width], | |
[y_scale, x_scale], [y_offset, x_offset]]. | |
groundtruths: | |
source_id: source image id. Default value -1 if the source id is empty | |
in the groundtruth annotation. | |
boxes: groundtruth bounding box annotations. The box is represented in | |
[y1, x1, y2, x2] format. The tennsor is padded with -1 to the fixed | |
dimension [self._max_num_instances, 4]. | |
classes: groundtruth classes annotations. The tennsor is padded with | |
-1 to the fixed dimension [self._max_num_instances]. | |
areas: groundtruth areas annotations. The tennsor is padded with -1 | |
to the fixed dimension [self._max_num_instances]. | |
is_crowds: groundtruth annotations to indicate if an annotation | |
represents a group of instances by value {0, 1}. The tennsor is | |
padded with 0 to the fixed dimension [self._max_num_instances]. | |
""" | |
with tf.name_scope('parser'): | |
data = self._example_decoder.decode(value) | |
return self._parse_fn(data) | |
def _parse_train_data(self, data): | |
"""Parses data for training and evaluation.""" | |
classes = data['groundtruth_classes'] | |
boxes = data['groundtruth_boxes'] | |
is_crowds = data['groundtruth_is_crowd'] | |
# Skips annotations with `is_crowd` = True. | |
if self._skip_crowd_during_training and self._is_training: | |
num_groundtrtuhs = tf.shape(input=classes)[0] | |
with tf.control_dependencies([num_groundtrtuhs, is_crowds]): | |
indices = tf.cond( | |
pred=tf.greater(tf.size(input=is_crowds), 0), | |
true_fn=lambda: tf.where(tf.logical_not(is_crowds))[:, 0], | |
false_fn=lambda: tf.cast(tf.range(num_groundtrtuhs), tf.int64)) | |
classes = tf.gather(classes, indices) | |
boxes = tf.gather(boxes, indices) | |
# Gets original image and its size. | |
image = data['image'] | |
image_shape = tf.shape(input=image)[0:2] | |
# Normalizes image with mean and std pixel values. | |
image = input_utils.normalize_image(image) | |
# Flips image randomly during training. | |
if self._aug_rand_hflip: | |
image, boxes = input_utils.random_horizontal_flip(image, boxes) | |
# Converts boxes from normalized coordinates to pixel coordinates. | |
boxes = box_utils.denormalize_boxes(boxes, image_shape) | |
# Resizes and crops image. | |
image, image_info = input_utils.resize_and_crop_image( | |
image, | |
self._output_size, | |
padded_size=input_utils.compute_padded_size(self._output_size, | |
2**self._max_level), | |
aug_scale_min=self._aug_scale_min, | |
aug_scale_max=self._aug_scale_max) | |
image_height, image_width, _ = image.get_shape().as_list() | |
# Resizes and crops boxes. | |
image_scale = image_info[2, :] | |
offset = image_info[3, :] | |
boxes = input_utils.resize_and_crop_boxes(boxes, image_scale, | |
image_info[1, :], offset) | |
# Filters out ground truth boxes that are all zeros. | |
indices = box_utils.get_non_empty_box_indices(boxes) | |
boxes = tf.gather(boxes, indices) | |
classes = tf.gather(classes, indices) | |
# Assigns anchors. | |
input_anchor = anchor.Anchor(self._min_level, self._max_level, | |
self._num_scales, self._aspect_ratios, | |
self._anchor_size, (image_height, image_width)) | |
anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold, | |
self._unmatched_threshold) | |
(cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors( | |
boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32)) | |
# If bfloat16 is used, casts input image to tf.bfloat16. | |
if self._use_bfloat16: | |
image = tf.cast(image, dtype=tf.bfloat16) | |
# Packs labels for model_fn outputs. | |
labels = { | |
'cls_targets': cls_targets, | |
'box_targets': box_targets, | |
'anchor_boxes': input_anchor.multilevel_boxes, | |
'num_positives': num_positives, | |
'image_info': image_info, | |
} | |
return image, labels | |
def _parse_eval_data(self, data): | |
"""Parses data for training and evaluation.""" | |
groundtruths = {} | |
classes = data['groundtruth_classes'] | |
boxes = data['groundtruth_boxes'] | |
# Gets original image and its size. | |
image = data['image'] | |
image_shape = tf.shape(input=image)[0:2] | |
# Normalizes image with mean and std pixel values. | |
image = input_utils.normalize_image(image) | |
# Converts boxes from normalized coordinates to pixel coordinates. | |
boxes = box_utils.denormalize_boxes(boxes, image_shape) | |
# Resizes and crops image. | |
image, image_info = input_utils.resize_and_crop_image( | |
image, | |
self._output_size, | |
padded_size=input_utils.compute_padded_size(self._output_size, | |
2**self._max_level), | |
aug_scale_min=1.0, | |
aug_scale_max=1.0) | |
image_height, image_width, _ = image.get_shape().as_list() | |
# Resizes and crops boxes. | |
image_scale = image_info[2, :] | |
offset = image_info[3, :] | |
boxes = input_utils.resize_and_crop_boxes(boxes, image_scale, | |
image_info[1, :], offset) | |
# Filters out ground truth boxes that are all zeros. | |
indices = box_utils.get_non_empty_box_indices(boxes) | |
boxes = tf.gather(boxes, indices) | |
classes = tf.gather(classes, indices) | |
# Assigns anchors. | |
input_anchor = anchor.Anchor(self._min_level, self._max_level, | |
self._num_scales, self._aspect_ratios, | |
self._anchor_size, (image_height, image_width)) | |
anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold, | |
self._unmatched_threshold) | |
(cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors( | |
boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32)) | |
# If bfloat16 is used, casts input image to tf.bfloat16. | |
if self._use_bfloat16: | |
image = tf.cast(image, dtype=tf.bfloat16) | |
# Sets up groundtruth data for evaluation. | |
groundtruths = { | |
'source_id': | |
data['source_id'], | |
'num_groundtrtuhs': | |
tf.shape(data['groundtruth_classes']), | |
'image_info': | |
image_info, | |
'boxes': | |
box_utils.denormalize_boxes(data['groundtruth_boxes'], image_shape), | |
'classes': | |
data['groundtruth_classes'], | |
'areas': | |
data['groundtruth_area'], | |
'is_crowds': | |
tf.cast(data['groundtruth_is_crowd'], tf.int32), | |
} | |
groundtruths['source_id'] = process_source_id(groundtruths['source_id']) | |
groundtruths = pad_groundtruths_to_fixed_size(groundtruths, | |
self._max_num_instances) | |
# Packs labels for model_fn outputs. | |
labels = { | |
'cls_targets': cls_targets, | |
'box_targets': box_targets, | |
'anchor_boxes': input_anchor.multilevel_boxes, | |
'num_positives': num_positives, | |
'image_info': image_info, | |
'groundtruths': groundtruths, | |
} | |
return image, labels | |
def _parse_predict_data(self, data): | |
"""Parses data for prediction.""" | |
# Gets original image and its size. | |
image = data['image'] | |
image_shape = tf.shape(input=image)[0:2] | |
# Normalizes image with mean and std pixel values. | |
image = input_utils.normalize_image(image) | |
# Resizes and crops image. | |
image, image_info = input_utils.resize_and_crop_image( | |
image, | |
self._output_size, | |
padded_size=input_utils.compute_padded_size(self._output_size, | |
2**self._max_level), | |
aug_scale_min=1.0, | |
aug_scale_max=1.0) | |
image_height, image_width, _ = image.get_shape().as_list() | |
# If bfloat16 is used, casts input image to tf.bfloat16. | |
if self._use_bfloat16: | |
image = tf.cast(image, dtype=tf.bfloat16) | |
# Compute Anchor boxes. | |
input_anchor = anchor.Anchor(self._min_level, self._max_level, | |
self._num_scales, self._aspect_ratios, | |
self._anchor_size, (image_height, image_width)) | |
labels = { | |
'anchor_boxes': input_anchor.multilevel_boxes, | |
'image_info': image_info, | |
} | |
# If mode is PREDICT_WITH_GT, returns groundtruths and training targets | |
# in labels. | |
if self._mode == ModeKeys.PREDICT_WITH_GT: | |
# Converts boxes from normalized coordinates to pixel coordinates. | |
boxes = box_utils.denormalize_boxes(data['groundtruth_boxes'], | |
image_shape) | |
groundtruths = { | |
'source_id': data['source_id'], | |
'num_detections': tf.shape(data['groundtruth_classes']), | |
'boxes': boxes, | |
'classes': data['groundtruth_classes'], | |
'areas': data['groundtruth_area'], | |
'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32), | |
} | |
groundtruths['source_id'] = process_source_id(groundtruths['source_id']) | |
groundtruths = pad_groundtruths_to_fixed_size(groundtruths, | |
self._max_num_instances) | |
labels['groundtruths'] = groundtruths | |
# Computes training objective for evaluation loss. | |
classes = data['groundtruth_classes'] | |
image_scale = image_info[2, :] | |
offset = image_info[3, :] | |
boxes = input_utils.resize_and_crop_boxes(boxes, image_scale, | |
image_info[1, :], offset) | |
# Filters out ground truth boxes that are all zeros. | |
indices = box_utils.get_non_empty_box_indices(boxes) | |
boxes = tf.gather(boxes, indices) | |
# Assigns anchors. | |
anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold, | |
self._unmatched_threshold) | |
(cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors( | |
boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32)) | |
labels['cls_targets'] = cls_targets | |
labels['box_targets'] = box_targets | |
labels['num_positives'] = num_positives | |
return image, labels | |