deanna-emery's picture
updates
93528c6
raw
history blame
18.3 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Data parser and processing.
Parse image and ground truths in a dataset to training targets and package them
into (image, labels) tuple for RetinaNet.
T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar
Focal Loss for Dense Object Detection. arXiv:1708.02002
"""
import tensorflow as tf, tf_keras
from official.legacy.detection.dataloader import anchor
from official.legacy.detection.dataloader import mode_keys as ModeKeys
from official.legacy.detection.dataloader import tf_example_decoder
from official.legacy.detection.utils import box_utils
from official.legacy.detection.utils import input_utils
def process_source_id(source_id):
"""Processes source_id to the right format."""
if source_id.dtype == tf.string:
source_id = tf.cast(tf.strings.to_number(source_id), tf.int32)
with tf.control_dependencies([source_id]):
source_id = tf.cond(
pred=tf.equal(tf.size(input=source_id), 0),
true_fn=lambda: tf.cast(tf.constant(-1), tf.int32),
false_fn=lambda: tf.identity(source_id))
return source_id
def pad_groundtruths_to_fixed_size(gt, n):
"""Pads the first dimension of groundtruths labels to the fixed size."""
gt['boxes'] = input_utils.pad_to_fixed_size(gt['boxes'], n, -1)
gt['is_crowds'] = input_utils.pad_to_fixed_size(gt['is_crowds'], n, 0)
gt['areas'] = input_utils.pad_to_fixed_size(gt['areas'], n, -1)
gt['classes'] = input_utils.pad_to_fixed_size(gt['classes'], n, -1)
return gt
class Parser(object):
"""Parser to parse an image and its annotations into a dictionary of tensors."""
def __init__(self,
output_size,
min_level,
max_level,
num_scales,
aspect_ratios,
anchor_size,
match_threshold=0.5,
unmatched_threshold=0.5,
aug_rand_hflip=False,
aug_scale_min=1.0,
aug_scale_max=1.0,
use_autoaugment=False,
autoaugment_policy_name='v0',
skip_crowd_during_training=True,
max_num_instances=100,
use_bfloat16=True,
mode=None):
"""Initializes parameters for parsing annotations in the dataset.
Args:
output_size: `Tensor` or `list` for [height, width] of output image. The
output_size should be divided by the largest feature stride 2^max_level.
min_level: `int` number of minimum level of the output feature pyramid.
max_level: `int` number of maximum level of the output feature pyramid.
num_scales: `int` number representing intermediate scales added on each
level. For instances, num_scales=2 adds one additional intermediate
anchor scales [2^0, 2^0.5] on each level.
aspect_ratios: `list` of float numbers representing the aspect raito
anchors added on each level. The number indicates the ratio of width to
height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors
on each scale level.
anchor_size: `float` number representing the scale of size of the base
anchor to the feature stride 2^level.
match_threshold: `float` number between 0 and 1 representing the
lower-bound threshold to assign positive labels for anchors. An anchor
with a score over the threshold is labeled positive.
unmatched_threshold: `float` number between 0 and 1 representing the
upper-bound threshold to assign negative labels for anchors. An anchor
with a score below the threshold is labeled negative.
aug_rand_hflip: `bool`, if True, augment training with random horizontal
flip.
aug_scale_min: `float`, the minimum scale applied to `output_size` for
data augmentation during training.
aug_scale_max: `float`, the maximum scale applied to `output_size` for
data augmentation during training.
use_autoaugment: `bool`, if True, use the AutoAugment augmentation policy
during training.
autoaugment_policy_name: `string` that specifies the name of the
AutoAugment policy that will be used during training.
skip_crowd_during_training: `bool`, if True, skip annotations labeled with
`is_crowd` equals to 1.
max_num_instances: `int` number of maximum number of instances in an
image. The groundtruth data will be padded to `max_num_instances`.
use_bfloat16: `bool`, if True, cast output image to tf.bfloat16.
mode: a ModeKeys. Specifies if this is training, evaluation, prediction or
prediction with groundtruths in the outputs.
"""
self._mode = mode
self._max_num_instances = max_num_instances
self._skip_crowd_during_training = skip_crowd_during_training
self._is_training = (mode == ModeKeys.TRAIN)
self._example_decoder = tf_example_decoder.TfExampleDecoder(
include_mask=False)
# Anchor.
self._output_size = output_size
self._min_level = min_level
self._max_level = max_level
self._num_scales = num_scales
self._aspect_ratios = aspect_ratios
self._anchor_size = anchor_size
self._match_threshold = match_threshold
self._unmatched_threshold = unmatched_threshold
# Data augmentation.
self._aug_rand_hflip = aug_rand_hflip
self._aug_scale_min = aug_scale_min
self._aug_scale_max = aug_scale_max
# Data Augmentation with AutoAugment.
self._use_autoaugment = use_autoaugment
self._autoaugment_policy_name = autoaugment_policy_name
# Device.
self._use_bfloat16 = use_bfloat16
# Data is parsed depending on the model Modekey.
if mode == ModeKeys.TRAIN:
self._parse_fn = self._parse_train_data
elif mode == ModeKeys.EVAL:
self._parse_fn = self._parse_eval_data
elif mode == ModeKeys.PREDICT or mode == ModeKeys.PREDICT_WITH_GT:
self._parse_fn = self._parse_predict_data
else:
raise ValueError('mode is not defined.')
def __call__(self, value):
"""Parses data to an image and associated training labels.
Args:
value: a string tensor holding a serialized tf.Example proto.
Returns:
image: image tensor that is preproessed to have normalized value and
dimension [output_size[0], output_size[1], 3]
labels:
cls_targets: ordered dictionary with keys
[min_level, min_level+1, ..., max_level]. The values are tensor with
shape [height_l, width_l, anchors_per_location]. The height_l and
width_l represent the dimension of class logits at l-th level.
box_targets: ordered dictionary with keys
[min_level, min_level+1, ..., max_level]. The values are tensor with
shape [height_l, width_l, anchors_per_location * 4]. The height_l and
width_l represent the dimension of bounding box regression output at
l-th level.
num_positives: number of positive anchors in the image.
anchor_boxes: ordered dictionary with keys
[min_level, min_level+1, ..., max_level]. The values are tensor with
shape [height_l, width_l, 4] representing anchor boxes at each level.
image_info: a 2D `Tensor` that encodes the information of the image and
the applied preprocessing. It is in the format of
[[original_height, original_width], [scaled_height, scaled_width],
[y_scale, x_scale], [y_offset, x_offset]].
groundtruths:
source_id: source image id. Default value -1 if the source id is empty
in the groundtruth annotation.
boxes: groundtruth bounding box annotations. The box is represented in
[y1, x1, y2, x2] format. The tennsor is padded with -1 to the fixed
dimension [self._max_num_instances, 4].
classes: groundtruth classes annotations. The tennsor is padded with
-1 to the fixed dimension [self._max_num_instances].
areas: groundtruth areas annotations. The tennsor is padded with -1
to the fixed dimension [self._max_num_instances].
is_crowds: groundtruth annotations to indicate if an annotation
represents a group of instances by value {0, 1}. The tennsor is
padded with 0 to the fixed dimension [self._max_num_instances].
"""
with tf.name_scope('parser'):
data = self._example_decoder.decode(value)
return self._parse_fn(data)
def _parse_train_data(self, data):
"""Parses data for training and evaluation."""
classes = data['groundtruth_classes']
boxes = data['groundtruth_boxes']
is_crowds = data['groundtruth_is_crowd']
# Skips annotations with `is_crowd` = True.
if self._skip_crowd_during_training and self._is_training:
num_groundtrtuhs = tf.shape(input=classes)[0]
with tf.control_dependencies([num_groundtrtuhs, is_crowds]):
indices = tf.cond(
pred=tf.greater(tf.size(input=is_crowds), 0),
true_fn=lambda: tf.where(tf.logical_not(is_crowds))[:, 0],
false_fn=lambda: tf.cast(tf.range(num_groundtrtuhs), tf.int64))
classes = tf.gather(classes, indices)
boxes = tf.gather(boxes, indices)
# Gets original image and its size.
image = data['image']
image_shape = tf.shape(input=image)[0:2]
# Normalizes image with mean and std pixel values.
image = input_utils.normalize_image(image)
# Flips image randomly during training.
if self._aug_rand_hflip:
image, boxes = input_utils.random_horizontal_flip(image, boxes)
# Converts boxes from normalized coordinates to pixel coordinates.
boxes = box_utils.denormalize_boxes(boxes, image_shape)
# Resizes and crops image.
image, image_info = input_utils.resize_and_crop_image(
image,
self._output_size,
padded_size=input_utils.compute_padded_size(self._output_size,
2**self._max_level),
aug_scale_min=self._aug_scale_min,
aug_scale_max=self._aug_scale_max)
image_height, image_width, _ = image.get_shape().as_list()
# Resizes and crops boxes.
image_scale = image_info[2, :]
offset = image_info[3, :]
boxes = input_utils.resize_and_crop_boxes(boxes, image_scale,
image_info[1, :], offset)
# Filters out ground truth boxes that are all zeros.
indices = box_utils.get_non_empty_box_indices(boxes)
boxes = tf.gather(boxes, indices)
classes = tf.gather(classes, indices)
# Assigns anchors.
input_anchor = anchor.Anchor(self._min_level, self._max_level,
self._num_scales, self._aspect_ratios,
self._anchor_size, (image_height, image_width))
anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold,
self._unmatched_threshold)
(cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors(
boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32))
# If bfloat16 is used, casts input image to tf.bfloat16.
if self._use_bfloat16:
image = tf.cast(image, dtype=tf.bfloat16)
# Packs labels for model_fn outputs.
labels = {
'cls_targets': cls_targets,
'box_targets': box_targets,
'anchor_boxes': input_anchor.multilevel_boxes,
'num_positives': num_positives,
'image_info': image_info,
}
return image, labels
def _parse_eval_data(self, data):
"""Parses data for training and evaluation."""
groundtruths = {}
classes = data['groundtruth_classes']
boxes = data['groundtruth_boxes']
# Gets original image and its size.
image = data['image']
image_shape = tf.shape(input=image)[0:2]
# Normalizes image with mean and std pixel values.
image = input_utils.normalize_image(image)
# Converts boxes from normalized coordinates to pixel coordinates.
boxes = box_utils.denormalize_boxes(boxes, image_shape)
# Resizes and crops image.
image, image_info = input_utils.resize_and_crop_image(
image,
self._output_size,
padded_size=input_utils.compute_padded_size(self._output_size,
2**self._max_level),
aug_scale_min=1.0,
aug_scale_max=1.0)
image_height, image_width, _ = image.get_shape().as_list()
# Resizes and crops boxes.
image_scale = image_info[2, :]
offset = image_info[3, :]
boxes = input_utils.resize_and_crop_boxes(boxes, image_scale,
image_info[1, :], offset)
# Filters out ground truth boxes that are all zeros.
indices = box_utils.get_non_empty_box_indices(boxes)
boxes = tf.gather(boxes, indices)
classes = tf.gather(classes, indices)
# Assigns anchors.
input_anchor = anchor.Anchor(self._min_level, self._max_level,
self._num_scales, self._aspect_ratios,
self._anchor_size, (image_height, image_width))
anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold,
self._unmatched_threshold)
(cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors(
boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32))
# If bfloat16 is used, casts input image to tf.bfloat16.
if self._use_bfloat16:
image = tf.cast(image, dtype=tf.bfloat16)
# Sets up groundtruth data for evaluation.
groundtruths = {
'source_id':
data['source_id'],
'num_groundtrtuhs':
tf.shape(data['groundtruth_classes']),
'image_info':
image_info,
'boxes':
box_utils.denormalize_boxes(data['groundtruth_boxes'], image_shape),
'classes':
data['groundtruth_classes'],
'areas':
data['groundtruth_area'],
'is_crowds':
tf.cast(data['groundtruth_is_crowd'], tf.int32),
}
groundtruths['source_id'] = process_source_id(groundtruths['source_id'])
groundtruths = pad_groundtruths_to_fixed_size(groundtruths,
self._max_num_instances)
# Packs labels for model_fn outputs.
labels = {
'cls_targets': cls_targets,
'box_targets': box_targets,
'anchor_boxes': input_anchor.multilevel_boxes,
'num_positives': num_positives,
'image_info': image_info,
'groundtruths': groundtruths,
}
return image, labels
def _parse_predict_data(self, data):
"""Parses data for prediction."""
# Gets original image and its size.
image = data['image']
image_shape = tf.shape(input=image)[0:2]
# Normalizes image with mean and std pixel values.
image = input_utils.normalize_image(image)
# Resizes and crops image.
image, image_info = input_utils.resize_and_crop_image(
image,
self._output_size,
padded_size=input_utils.compute_padded_size(self._output_size,
2**self._max_level),
aug_scale_min=1.0,
aug_scale_max=1.0)
image_height, image_width, _ = image.get_shape().as_list()
# If bfloat16 is used, casts input image to tf.bfloat16.
if self._use_bfloat16:
image = tf.cast(image, dtype=tf.bfloat16)
# Compute Anchor boxes.
input_anchor = anchor.Anchor(self._min_level, self._max_level,
self._num_scales, self._aspect_ratios,
self._anchor_size, (image_height, image_width))
labels = {
'anchor_boxes': input_anchor.multilevel_boxes,
'image_info': image_info,
}
# If mode is PREDICT_WITH_GT, returns groundtruths and training targets
# in labels.
if self._mode == ModeKeys.PREDICT_WITH_GT:
# Converts boxes from normalized coordinates to pixel coordinates.
boxes = box_utils.denormalize_boxes(data['groundtruth_boxes'],
image_shape)
groundtruths = {
'source_id': data['source_id'],
'num_detections': tf.shape(data['groundtruth_classes']),
'boxes': boxes,
'classes': data['groundtruth_classes'],
'areas': data['groundtruth_area'],
'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32),
}
groundtruths['source_id'] = process_source_id(groundtruths['source_id'])
groundtruths = pad_groundtruths_to_fixed_size(groundtruths,
self._max_num_instances)
labels['groundtruths'] = groundtruths
# Computes training objective for evaluation loss.
classes = data['groundtruth_classes']
image_scale = image_info[2, :]
offset = image_info[3, :]
boxes = input_utils.resize_and_crop_boxes(boxes, image_scale,
image_info[1, :], offset)
# Filters out ground truth boxes that are all zeros.
indices = box_utils.get_non_empty_box_indices(boxes)
boxes = tf.gather(boxes, indices)
# Assigns anchors.
anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold,
self._unmatched_threshold)
(cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors(
boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32))
labels['cls_targets'] = cls_targets
labels['box_targets'] = box_targets
labels['num_positives'] = num_positives
return image, labels