deanna-emery's picture
updates
93528c6
raw
history blame
17.8 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A parameter dictionary class which supports the nest structure."""
import collections
import copy
import re
import six
import tensorflow as tf, tf_keras
import yaml
# regex pattern that matches on key-value pairs in a comma-separated
# key-value pair string. It splits each k-v pair on the = sign, and
# matches on values that are within single quotes, double quotes, single
# values (e.g. floats, ints, etc.), and a lists within brackets.
_PARAM_RE = re.compile(
r"""
(?P<name>[a-zA-Z][\w\.]*)(?P<bracketed_index>\[?[0-9]*\]?) # variable name: "var" or "x" followed by optional index: "[0]" or "[23]"
\s*=\s*
((?P<val>\'(.*?)\' # single quote
|
\"(.*?)\" # double quote
|
[^,\[]* # single value
|
\[[^\]]*\])) # list of values
($|,\s*)""", re.VERBOSE)
_CONST_VALUE_RE = re.compile(r'(\d.*|-\d.*|None)')
# Yaml LOADER with an implicit resolver to parse float decimal and exponential
# format. The regular experission parse the following cases:
# 1- Decimal number with an optional exponential term.
# 2- Integer number with an exponential term.
# 3- Decimal number with an optional exponential term.
# 4- Decimal number.
_LOADER = yaml.FullLoader
_LOADER.add_implicit_resolver(
'tag:yaml.org,2002:float',
re.compile(r'''
^(?:[-+]?(?:[0-9][0-9_]*)\\.[0-9_]*(?:[eE][-+]?[0-9]+)?
|
[-+]?(?:[0-9][0-9_]*)(?:[eE][-+]?[0-9]+)
|
\\.[0-9_]+(?:[eE][-+][0-9]+)?
|
[-+]?[0-9][0-9_]*(?::[0-5]?[0-9])+\\.[0-9_]*)$''', re.X),
list('-+0123456789.'))
class ParamsDict(object):
"""A hyperparameter container class."""
RESERVED_ATTR = ['_locked', '_restrictions']
def __init__(self, default_params=None, restrictions=None):
"""Instantiate a ParamsDict.
Instantiate a ParamsDict given a set of default parameters and a list of
restrictions. Upon initialization, it validates itself by checking all the
defined restrictions, and raise error if it finds inconsistency.
Args:
default_params: a Python dict or another ParamsDict object including the
default parameters to initialize.
restrictions: a list of strings, which define a list of restrictions to
ensure the consistency of different parameters internally. Each
restriction string is defined as a binary relation with a set of
operators, including {'==', '!=', '<', '<=', '>', '>='}.
"""
self._locked = False
self._restrictions = []
if restrictions:
self._restrictions = restrictions
if default_params is None:
default_params = {}
self.override(default_params, is_strict=False)
def _set(self, k, v):
if isinstance(v, dict):
self.__dict__[k] = ParamsDict(v)
else:
self.__dict__[k] = copy.deepcopy(v)
def __setattr__(self, k, v):
"""Sets the value of the existing key.
Note that this does not allow directly defining a new key. Use the
`override` method with `is_strict=False` instead.
Args:
k: the key string.
v: the value to be used to set the key `k`.
Raises:
KeyError: if k is not defined in the ParamsDict.
"""
if k not in ParamsDict.RESERVED_ATTR:
if k not in self.__dict__.keys():
raise KeyError('The key `%{}` does not exist. '
'To extend the existing keys, use '
'`override` with `is_strict` = True.'.format(k))
if self._locked:
raise ValueError('The ParamsDict has been locked. '
'No change is allowed.')
self._set(k, v)
def __getattr__(self, k):
"""Gets the value of the existing key.
Args:
k: the key string.
Returns:
the value of the key.
Raises:
AttributeError: if k is not defined in the ParamsDict.
"""
if k not in self.__dict__.keys():
raise AttributeError('The key `{}` does not exist. '.format(k))
return self.__dict__[k]
def __contains__(self, key):
"""Implements the membership test operator."""
return key in self.__dict__
def get(self, key, value=None):
"""Accesses through built-in dictionary get method."""
return self.__dict__.get(key, value)
def __delattr__(self, k):
"""Deletes the key and removes its values.
Args:
k: the key string.
Raises:
AttributeError: if k is reserverd or not defined in the ParamsDict.
ValueError: if the ParamsDict instance has been locked.
"""
if k in ParamsDict.RESERVED_ATTR:
raise AttributeError(
'The key `{}` is reserved. No change is allowes. '.format(k))
if k not in self.__dict__.keys():
raise AttributeError('The key `{}` does not exist. '.format(k))
if self._locked:
raise ValueError('The ParamsDict has been locked. No change is allowed.')
del self.__dict__[k]
def override(self, override_params, is_strict=True):
"""Override the ParamsDict with a set of given params.
Args:
override_params: a dict or a ParamsDict specifying the parameters to be
overridden.
is_strict: a boolean specifying whether override is strict or not. If
True, keys in `override_params` must be present in the ParamsDict. If
False, keys in `override_params` can be different from what is currently
defined in the ParamsDict. In this case, the ParamsDict will be extended
to include the new keys.
"""
if self._locked:
raise ValueError('The ParamsDict has been locked. No change is allowed.')
if isinstance(override_params, ParamsDict):
override_params = override_params.as_dict()
self._override(override_params, is_strict) # pylint: disable=protected-access
def _override(self, override_dict, is_strict=True):
"""The implementation of `override`."""
for k, v in six.iteritems(override_dict):
if k in ParamsDict.RESERVED_ATTR:
raise KeyError('The key `%{}` is internally reserved. '
'Can not be overridden.')
if k not in self.__dict__.keys():
if is_strict:
raise KeyError('The key `{}` does not exist. '
'To extend the existing keys, use '
'`override` with `is_strict` = False.'.format(k))
else:
self._set(k, v)
else:
if isinstance(v, dict):
self.__dict__[k]._override(v, is_strict) # pylint: disable=protected-access
elif isinstance(v, ParamsDict):
self.__dict__[k]._override(v.as_dict(), is_strict) # pylint: disable=protected-access
else:
self.__dict__[k] = copy.deepcopy(v)
def lock(self):
"""Makes the ParamsDict immutable."""
self._locked = True
def as_dict(self):
"""Returns a dict representation of ParamsDict.
For the nested ParamsDict, a nested dict will be returned.
"""
params_dict = {}
for k, v in six.iteritems(self.__dict__):
if k not in ParamsDict.RESERVED_ATTR:
if isinstance(v, ParamsDict):
params_dict[k] = v.as_dict()
else:
params_dict[k] = copy.deepcopy(v)
return params_dict
def validate(self):
"""Validate the parameters consistency based on the restrictions.
This method validates the internal consistency using the pre-defined list of
restrictions. A restriction is defined as a string which specifies a binary
operation. The supported binary operations are {'==', '!=', '<', '<=', '>',
'>='}. Note that the meaning of these operators are consistent with the
underlying Python immplementation. Users should make sure the define
restrictions on their type make sense.
For example, for a ParamsDict like the following
```
a:
a1: 1
a2: 2
b:
bb:
bb1: 10
bb2: 20
ccc:
a1: 1
a3: 3
```
one can define two restrictions like this
['a.a1 == b.ccc.a1', 'a.a2 <= b.bb.bb2']
What it enforces are:
- a.a1 = 1 == b.ccc.a1 = 1
- a.a2 = 2 <= b.bb.bb2 = 20
Raises:
KeyError: if any of the following happens
(1) any of parameters in any of restrictions is not defined in
ParamsDict,
(2) any inconsistency violating the restriction is found.
ValueError: if the restriction defined in the string is not supported.
"""
def _get_kv(dotted_string, params_dict):
"""Get keys and values indicated by dotted_string."""
if _CONST_VALUE_RE.match(dotted_string) is not None:
const_str = dotted_string
if const_str == 'None':
constant = None
else:
constant = float(const_str)
return None, constant
else:
tokenized_params = dotted_string.split('.')
v = params_dict
for t in tokenized_params:
v = v[t]
return tokenized_params[-1], v
def _get_kvs(tokens, params_dict):
if len(tokens) != 2:
raise ValueError('Only support binary relation in restriction.')
stripped_tokens = [t.strip() for t in tokens]
left_k, left_v = _get_kv(stripped_tokens[0], params_dict)
right_k, right_v = _get_kv(stripped_tokens[1], params_dict)
return left_k, left_v, right_k, right_v
params_dict = self.as_dict()
for restriction in self._restrictions:
if '==' in restriction:
tokens = restriction.split('==')
_, left_v, _, right_v = _get_kvs(tokens, params_dict)
if left_v != right_v:
raise KeyError(
'Found inconsistency between key `{}` and key `{}`.'.format(
tokens[0], tokens[1]))
elif '!=' in restriction:
tokens = restriction.split('!=')
_, left_v, _, right_v = _get_kvs(tokens, params_dict)
if left_v == right_v:
raise KeyError(
'Found inconsistency between key `{}` and key `{}`.'.format(
tokens[0], tokens[1]))
elif '<' in restriction:
tokens = restriction.split('<')
_, left_v, _, right_v = _get_kvs(tokens, params_dict)
if left_v >= right_v:
raise KeyError(
'Found inconsistency between key `{}` and key `{}`.'.format(
tokens[0], tokens[1]))
elif '<=' in restriction:
tokens = restriction.split('<=')
_, left_v, _, right_v = _get_kvs(tokens, params_dict)
if left_v > right_v:
raise KeyError(
'Found inconsistency between key `{}` and key `{}`.'.format(
tokens[0], tokens[1]))
elif '>' in restriction:
tokens = restriction.split('>')
_, left_v, _, right_v = _get_kvs(tokens, params_dict)
if left_v <= right_v:
raise KeyError(
'Found inconsistency between key `{}` and key `{}`.'.format(
tokens[0], tokens[1]))
elif '>=' in restriction:
tokens = restriction.split('>=')
_, left_v, _, right_v = _get_kvs(tokens, params_dict)
if left_v < right_v:
raise KeyError(
'Found inconsistency between key `{}` and key `{}`.'.format(
tokens[0], tokens[1]))
else:
raise ValueError('Unsupported relation in restriction.')
def read_yaml_to_params_dict(file_path: str):
"""Reads a YAML file to a ParamsDict."""
with tf.io.gfile.GFile(file_path, 'r') as f:
params_dict = yaml.load(f, Loader=_LOADER)
return ParamsDict(params_dict)
def save_params_dict_to_yaml(params, file_path):
"""Saves the input ParamsDict to a YAML file."""
with tf.io.gfile.GFile(file_path, 'w') as f:
def _my_list_rep(dumper, data):
# u'tag:yaml.org,2002:seq' is the YAML internal tag for sequence.
return dumper.represent_sequence(
u'tag:yaml.org,2002:seq', data, flow_style=True)
yaml.add_representer(list, _my_list_rep)
yaml.dump(params.as_dict(), f, default_flow_style=False)
def nested_csv_str_to_json_str(csv_str):
"""Converts a nested (using '.') comma-separated k=v string to a JSON string.
Converts a comma-separated string of key/value pairs that supports
nesting of keys to a JSON string. Nesting is implemented using
'.' between levels for a given key.
Spacing between commas and = is supported (e.g. there is no difference between
"a=1,b=2", "a = 1, b = 2", or "a=1, b=2") but there should be no spaces before
keys or after values (e.g. " a=1,b=2" and "a=1,b=2 " are not supported).
Note that this will only support values supported by CSV, meaning
values such as nested lists (e.g. "a=[[1,2,3],[4,5,6]]") are not
supported. Strings are supported as well, e.g. "a='hello'".
An example conversion would be:
"a=1, b=2, c.a=2, c.b=3, d.a.a=5"
to
"{ a: 1, b : 2, c: {a : 2, b : 3}, d: {a: {a : 5}}}"
Args:
csv_str: the comma separated string.
Returns:
the converted JSON string.
Raises:
ValueError: If csv_str is not in a comma separated string or
if the string is formatted incorrectly.
"""
if not csv_str:
return ''
array_param_map = collections.defaultdict(str)
max_index_map = collections.defaultdict(str)
formatted_entries = []
nested_map = collections.defaultdict(list)
pos = 0
while pos < len(csv_str):
m = _PARAM_RE.match(csv_str, pos)
if not m:
raise ValueError('Malformed hyperparameter value while parsing '
'CSV string: %s' % csv_str[pos:])
pos = m.end()
# Parse the values.
m_dict = m.groupdict()
name = m_dict['name']
v = m_dict['val']
bracketed_index = m_dict['bracketed_index']
# If we reach the name of the array.
if bracketed_index and '.' not in name:
# Extract the array's index by removing '[' and ']'
index = int(bracketed_index[1:-1])
if '.' in v:
numeric_val = float(v)
else:
numeric_val = int(v)
# Add the value to the array.
if name not in array_param_map:
max_index_map[name] = index
array_param_map[name] = [None] * (index + 1)
array_param_map[name][index] = numeric_val
elif index < max_index_map[name]:
array_param_map[name][index] = numeric_val
else:
array_param_map[name] += [None] * (index - max_index_map[name])
array_param_map[name][index] = numeric_val
max_index_map[name] = index
continue
# If a GCS path (e.g. gs://...) is provided, wrap this in quotes
# as yaml.load would otherwise throw an exception
if re.match(r'(?=[^\"\'])(?=[gs://])', v):
v = '\'{}\''.format(v)
name_nested = name.split('.')
if len(name_nested) > 1:
grouping = name_nested[0]
if bracketed_index:
value = '.'.join(name_nested[1:]) + bracketed_index + '=' + v
else:
value = '.'.join(name_nested[1:]) + '=' + v
nested_map[grouping].append(value)
else:
formatted_entries.append('%s : %s' % (name, v))
for grouping, value in nested_map.items():
value = ','.join(value)
value = nested_csv_str_to_json_str(value)
formatted_entries.append('%s : %s' % (grouping, value))
# Add array parameters and check that the array is fully initialized.
for name in array_param_map:
if any(v is None for v in array_param_map[name]):
raise ValueError('Did not pass all values of array: %s' % name)
formatted_entries.append('%s : %s' % (name, array_param_map[name]))
return '{' + ', '.join(formatted_entries) + '}'
def override_params_dict(params, dict_or_string_or_yaml_file, is_strict):
"""Override a given ParamsDict using a dict, JSON/YAML/CSV string or YAML file.
The logic of the function is outlined below:
1. Test that the input is a dict. If not, proceed to 2.
2. Tests that the input is a string. If not, raise unknown ValueError
2.1. Test if the string is in a CSV format. If so, parse.
If not, proceed to 2.2.
2.2. Try loading the string as a YAML/JSON. If successful, parse to
dict and use it to override. If not, proceed to 2.3.
2.3. Try using the string as a file path and load the YAML file.
Args:
params: a ParamsDict object to be overridden.
dict_or_string_or_yaml_file: a Python dict, JSON/YAML/CSV string or path to
a YAML file specifying the parameters to be overridden.
is_strict: a boolean specifying whether override is strict or not.
Returns:
params: the overridden ParamsDict object.
Raises:
ValueError: if failed to override the parameters.
"""
if not dict_or_string_or_yaml_file:
return params
if isinstance(dict_or_string_or_yaml_file, dict):
params.override(dict_or_string_or_yaml_file, is_strict)
elif isinstance(dict_or_string_or_yaml_file, six.string_types):
try:
dict_or_string_or_yaml_file = (
nested_csv_str_to_json_str(dict_or_string_or_yaml_file))
except ValueError:
pass
params_dict = yaml.load(dict_or_string_or_yaml_file, Loader=_LOADER)
if isinstance(params_dict, dict):
params.override(params_dict, is_strict)
else:
with tf.io.gfile.GFile(dict_or_string_or_yaml_file) as f:
params.override(yaml.load(f, Loader=_LOADER), is_strict)
else:
raise ValueError('Unknown input type to parse.')
return params